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Modeling Swelling Instabilities in Surface Confined Hydrogels 

Abiola Shitta 

Abstract 

 

The buckling of a material subject to stress is a very common phenomenon observed in 

mechanics. However, the observed buckling of a surface confined hydrogel due to 

swelling is a unique manifestation of the buckling problem. The reason for buckling is the 

same in all cases; there is a certain magnitude of force that once exceeded, causes the 

material to deform itself into a buckling mode. Exactly what that buckling mode is as well 

as how much force is necessary to cause buckling depends on the material properties. 

Taking both a finite difference and analytical approach to the problem, it is desired to 

obtain relationships between the material properties and the predicted buckling modes. 

These relationships will make it possible for a hydrogel to be designed so that the 

predicted amount of buckling will occur. 
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Background 

 

Responsive polymers and their applications have become a very active area of 

research. The applications for these polymers range from biomimetic actuators to 

biocatalysts and the list continues to grow [1]. Responsive surfaces are another 

application of these materials where the fact that the polymer is attached to a surface 

can give rise to unique behavior [2, 3]. 

A responsive polymer hydrogel confined to a surface can be made to swell with a variety 

of different stimuli. This swelling can, under certain circumstances, cause the hydrogel to 

buckle. If the gel is free to swell as it pleases or is not constrained, there is no observed 

buckling phenomenon. However, confining the hydrogel to a surface causes stress to 

build up within the gel as it swells. This build up in stress is caused by the opposition to 

its free swelling due to the surface confinement. This opposing force manifests itself as a 

compression of the gel. If the magnitude of the compression is sufficient, buckling of the 

hydrogel will occur. Fig. 1 shows an illustration of this system with a uniaxial 

compression. This is the framework that will be used to model buckling in the hydrogel. 
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y z
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Figure 1: Setup of Buckling Problem 
 

The stress at which buckling occurs depends on a variety of factors; the dimensions of 

the material, the way it is supported and the properties out of which it is made [4]. In the 

case of a swelling hydrogel, it could also be dependent on how much the hydrogel is 

allowed to or capable of swelling since this could very well determine the magnitude of 

compression that it undergoes. 

It is the goal of this paper to find out how these factors play a role in the buckling of a 

hydrogel and potentially what relationships can be determined from these phenomena. 

 

Continuum Mechanics 

 

Continuum mechanics make it possible for a body being subject to stress to be analyzed 

with minimal complexity. A continuum body is described as a body in which the 

molecular interactions are ignored. If you were to continually break the body up into 

smaller and smaller pieces there will be a point at which the interactions between those 

pieces will be negligible. Those pieces will also eventually become approximate points 

which cover the entire volume of the continuum body. This idea makes it possible to 

solely analyze the effect of applying a load to a material without the added complexity of 

studying the intermolecular forces.  
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Within continuum mechanics there are principles that apply to all materials as well as the 

constitutive equations that define specific mechanical behavior. The general principles 

refer to things like the conservation of mass, energy and momentum. To our knowledge, 

all known materials obey these general principles; so the equations that they generate 

set up the foundation of continuum mechanics. The constitutive equations apply to 

materials that are linear elastic isotropic, linear elastic anisotropic, nonlinear elastic 

isotropic and so on and so forth. These descriptions tell exactly what modifications have 

to be made so that the general principles still apply and accommodate the behavior of 

the material. 

The difficulty with problems in continuum mechanics, as with problems in any other field, 

lies primarily in how much information you have about the problem at hand. For 

example, let us say that you know the initial and final conformation of a material and you 

want to find the equations that describe what stresses are required to make that so. This 

problem would require that you have an equation that describes the displacement of the 

points in the body from the initial to the final state. This equation is difficult to come by 

but it could probably be determined by marking the material initially and observing how 

the same points move after loading to arrive at an approximate equation. The point is 

that the equations in continuum mechanics can be solved yet the necessary pieces may 

not always make it possible to achieve a solution. 

At any rate, this analysis alone is not enough to describe the buckling behavior that is 

observed. While a buckled solution can result from a certain stress field being applied to 

a material, this tells us nothing about what causes it and the criteria necessary to make it 

so. 
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Linear Elastic Theory 

 

A polymer hydrogel is an elastic material. It has the ability to return to its initial size and 

shape after it has been subjected to stress. This only applies up until the point before the 

material yields or buckles to the applied stress. Linear elastic theory is capable of 

describing the behavior of a material before it yields or undergoes a large deformation. If 

the material were to yield, its behavior then becomes nonlinear and a more complicated 

set of equations would be necessary to map the deformation of the material from that 

point on. Although this can be done, the approach typically is to initially use linear elastic 

theory. If this analysis fails to accurately describe the materials behavior then a nonlinear 

analysis is justified. 

The equations used in linear elastic theory are linear relationships between the stress 

and strain of the material[5-7]. This along with the ability of the material to return to its 

initial state are the main tenets of the theory. The other tenets of the theory are that the 

rate at which the load is applied is of no consequence and the deformations that occur 

are very small provided that the material is still stable. With this added piece of 

knowledge, a framework can be devised that describes the behavior of a polymer 

hydrogel being subject to stress. The only issue is how to describe what happens to the 

material when it buckles without making use of the nonlinear analysis. 

  

Structural or Elastic Stability Theory  

 

Structural and Elastic Stability Theory refer to the same general idea. The idea is that 

there comes a point at which a material, be it elastic or not, loses its stability or its ability 

to support the applied load. This instability can make itself manifest in a variety of ways. 
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It can be done through bending as well as through multiple buckling modes. The point at 

which this instability occurs depends on how much work is being done on the material as 

well as the amount of energy required to cause a large deformation. This means that the 

nature of the material and the applied forces on that material determine how it looks 

when it becomes unstable and what critical values of these parameters are required to 

make it so. 

This is a very crucial part in the study and analysis of buckling phenomena. This theory 

makes it possible to have tangible, applicable quantities that can be used to show how 

they affect buckling and structural stability.  

 

Biharmonic Equations and the Airy Stress Function 

 

The biharmonic equation is a differential equation that results from the equation shown 

below which uses the biharmonic operator ∇4. 

∇4ψ = 0     (1) 

In Cartesian coordinates and in three dimensions the equation becomes: 

∇4ψ = �
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2� �
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2� ψ 

=
∂4ψ
∂x4 +

∂4ψ
∂y4 +

∂4ψ
∂z4 + 2

∂4ψ
∂x2 ∂y2 + 2

∂4ψ
∂x2 ∂z2 + 2

∂4ψ
∂y2 ∂z2 = 0    (2) 

There are certain complex phenomena that require the use of this equation[8]. The 

bending and flexing of thin flat plates is one of these phenomena. If a confined hydrogel 

strip is treated like a thin flat plate, then a form of the biharmonic equation can be used 

to analyze the stresses acting on it. This form of the biharmonic equation is called the 

Airy Stress function. This function is capable of determining the equilibrium conformation 

of a material subjected to stress. The main idea behind this function is that at 
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equilibrium, the stresses acting on the object satisfy a set of compatibility criteria[5, 7]. 

These criteria are shown below. 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝜎𝜎𝑦𝑦𝑥𝑥

𝜕𝜕𝑦𝑦
+

𝜕𝜕𝜎𝜎𝑧𝑧𝑥𝑥

𝜕𝜕𝑧𝑧
+ 𝐹𝐹𝑥𝑥 = 0 

𝜕𝜕𝜎𝜎𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦

𝜕𝜕𝑦𝑦
+

𝜕𝜕𝜎𝜎𝑧𝑧𝑦𝑦

𝜕𝜕𝑧𝑧
+ 𝐹𝐹𝑦𝑦 = 0 

𝜕𝜕𝜎𝜎𝑥𝑥𝑧𝑧

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝜎𝜎𝑦𝑦𝑧𝑧

𝜕𝜕𝑦𝑦
+

𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧

𝜕𝜕𝑧𝑧
+ 𝐹𝐹𝑧𝑧 = 0   (3) 

With these equations in hand, the Airy Stress function can be derived. This then makes it 

possible for the relationships that exist within linear elastic theory to be used to further 

simplify the equations so that there are fewer degrees of freedom. 

 

Derivation of Airy Stress Function 

 

The Airy stress function (ϕ) is a function that describes the equilibrium of a continuum 

body. In the absence of body forces, in two dimensions with plane strain, the strain 

components at equilibrium satisfy Eq. 4. 

𝜕𝜕2𝑒𝑒𝑥𝑥𝑥𝑥

𝜕𝜕𝑦𝑦2 +
𝜕𝜕2𝑒𝑒𝑦𝑦𝑦𝑦

𝜕𝜕𝑥𝑥2 − 2
𝜕𝜕2𝑒𝑒𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
= 0    (4) 

From linear elastic theory, the stress strain relations are: 

𝑒𝑒𝑥𝑥𝑥𝑥 =
1 + 𝜈𝜈

𝐸𝐸
�(1 − 𝜈𝜈)𝜎𝜎𝑥𝑥𝑥𝑥 − 𝜈𝜈𝜎𝜎𝑦𝑦𝑦𝑦 � 

𝑒𝑒𝑦𝑦𝑦𝑦 =
1 + 𝜈𝜈

𝐸𝐸
�(1 − 𝜈𝜈)𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜈𝜈𝜎𝜎𝑥𝑥𝑥𝑥 � 
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𝑒𝑒𝑥𝑥𝑦𝑦 =
1 + 𝜈𝜈

𝐸𝐸
𝜎𝜎𝑥𝑥𝑦𝑦    (5) 

Substituting the stress strain relations into Eq. 4, 

(1 − 𝜈𝜈)
𝜕𝜕2𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝑦𝑦2 − 𝜈𝜈
𝜕𝜕2𝜎𝜎𝑦𝑦𝑦𝑦

𝜕𝜕𝑦𝑦2 + (1 − 𝜈𝜈)
𝜕𝜕2𝜎𝜎𝑦𝑦𝑦𝑦

𝜕𝜕𝑥𝑥2 − 𝜈𝜈
𝜕𝜕2𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝑥𝑥2 − 2
𝜕𝜕2𝜎𝜎𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
= 0   (6) 

The potential functions defined by the stresses are shown below. 

𝜎𝜎𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2     𝜎𝜎𝑦𝑦𝑦𝑦 =

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2     𝜎𝜎𝑥𝑥𝑦𝑦 = −

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

  (7)  

Substituting the potential function into Eq. 6, 

 (1 − 𝜈𝜈)
𝜕𝜕4𝜙𝜙
𝜕𝜕𝑦𝑦4 + (1 − 𝜈𝜈)

𝜕𝜕4𝜙𝜙
𝜕𝜕𝑥𝑥4 + 2(1 − 𝜈𝜈)

𝜕𝜕4𝜙𝜙
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 = 0 

𝜕𝜕4𝜙𝜙
𝜕𝜕𝑦𝑦4 +

𝜕𝜕4𝜙𝜙
𝜕𝜕𝑥𝑥4 + 2

𝜕𝜕4𝜙𝜙
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 = 𝛻𝛻4𝜙𝜙 = 0    (8) 

There are other biharmonic equations that expressed in terms of strains, stresses and 

displacements that describe a body in equilibrium[7, 9]. It is our desire to obtain the 

buckled conformation of the hydrogel and this will require that the equation be expressed 

in terms of displacements. This same principle is applicable to the boundary conditions 

and they will also need to be expressed in terms of displacements so that that will be the 

only unknown. 
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Finite Difference Approximation 

 

The finite difference approximation method was used to solve the differential equation 

that models the buckling of the hydrogel. This method was also used to attempt to see if 

changes in the parameters of the function would give rise to noticeable changes in the 

buckling behavior. It has been implemented as a way to solve boundary value problems 

that contain partial differential equations of various types and orders[10-13].The finite 

difference approximation breaks down derivatives into small and gradual step changes 

over a given variable. For example, the first derivative of a variable y with respect to x is 

shown below:  

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

≅
∆𝑦𝑦
∆𝑥𝑥

=
𝑦𝑦(𝑥𝑥 + ∆𝑥𝑥) − 𝑦𝑦(𝑥𝑥)

∆𝑥𝑥
  

As the step size becomes smaller, the approximation of the derivative becomes more 

accurate. However, more calculations have to be done to achieve this accuracy. The 

effect of this accuracy on solution stability will be discussed in further detail in a later 

section. Below are the some of the finite difference approximations necessary to solve 

the Airy Stress function. 

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥4 =

𝑍𝑍𝑖𝑖+2,𝑗𝑗 − 4𝑍𝑍𝑖𝑖+1,𝑗𝑗 + 6𝑍𝑍𝑖𝑖 ,𝑗𝑗 − 4𝑍𝑍𝑖𝑖−1,𝑗𝑗 + 𝑍𝑍𝑖𝑖−2,𝑗𝑗

(∆𝑥𝑥)4  

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑦𝑦4 =

𝑍𝑍𝑖𝑖 ,𝑗𝑗 +2 − 4𝑍𝑍𝑖𝑖 ,𝑗𝑗 +1 + 6𝑍𝑍𝑖𝑖 ,𝑗𝑗 − 4𝑍𝑍𝑖𝑖 ,𝑗𝑗 −1 + 𝑍𝑍𝑖𝑖 ,𝑗𝑗 −2

(∆𝑦𝑦)4  

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2

=
𝑍𝑍𝑖𝑖+1,𝑗𝑗 +1 + 𝑍𝑍𝑖𝑖+1,𝑗𝑗 −1 − 2𝑍𝑍𝑖𝑖+1,𝑗𝑗 − 2𝑍𝑍𝑖𝑖−1,𝑗𝑗 + 4𝑍𝑍𝑖𝑖 ,𝑗𝑗 − 2𝑍𝑍𝑖𝑖,𝑗𝑗 +1 − 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 −1 + 𝑍𝑍𝑖𝑖−1,𝑗𝑗 +1 + 𝑍𝑍𝑖𝑖−1,𝑗𝑗 −1

(∆𝑥𝑥)2(∆𝑦𝑦)2  
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Combining these derivative expressions make it possible to have an approximation of 

the Airy Stress function or any other biharmonic equation as well as the behavior of the 

function on the boundaries. While further derivation may be necessary to describe the 

boundary behavior, they can be accurately encompassed within the framework of finite 

differences. 

 

Basic Idea and Setup 

 

Once the finite difference equations have been derived, the area over which the 

equation applies must be defined. The points of analysis on the hydrogel are along the 

surface in the x and y directions. The goal is to use the overall equation to solve for the 

deflection of the surface in the z direction. Fig. 2 shows how the grid points are defined 

as well as where the boundaries lie. 

x

y

Zi,j

Zi,j+1

Zi,j-1

Zi+1,j Zi-1,j

y = L

y = 0

x = Wx = 0

 

Figure 2: Boundaries and Grid Definition of Finite Difference Method 
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The points are counted from the bottom left when x and y are equal to zero. They are 

then iteratively stepped out in increments of the defined step size upwards in the x 

direction. Once the width of the hydrogel is reached, the next grid point is set at when x 

equals zero. However, that point is one step above the first grid point in the y direction. 

This procedure is continued until the points mark the boundaries and the entire surface 

at regularly spaced intervals. 

 

Stability of Solution 

 

The solution of the finite difference approximation has multiple limitations. Since this is 

an approximation, there will always be a certain amount of error. There is a point 

however at which this error becomes intolerable to the set of equations being 

approximated. At this point the system can go unstable and the solution that is 

calculated can be very far from accurate. 

The von Neumann method is capable of determining the stability criteria for the finite 

difference equations over a specific area [10, 14]. This method introduces an error into 

the difference equations which is then subsequently solved for. The upper limit of this 

error is determined and this becomes the stability criteria. There seem to only be 

solutions to specific problems solved with this method and very little explanation about 

how to go about using the method itself. Because of this, the number of grid points, 

which determine the step size of that variable, were changed and the effect on stability 

was analyzed. 
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Boundary Conditions 

 

Provided that the boundary conditions are linear in nature, a linear solving technique will 

provide a solution. However, non linear boundary conditions will require the use of a non 

linear solver. There are various ways to describe the boundaries of a material subjected 

to stress[6, 7, 9]. In terms of the vertical displacement in the z direction, the boundary 

conditions are defined as follows. 

For a clamped edge, 

𝑍𝑍 = 0   (9) 

𝜕𝜕𝑍𝑍
𝜕𝜕𝑦𝑦

= 0   (10) 

Combining Eqs.9 & 10, 

𝜕𝜕𝑍𝑍
𝜕𝜕𝑦𝑦

− 𝑍𝑍 = 0   (11) 

The forward finite difference approximation of the first derivative is: 

𝜕𝜕𝑍𝑍
𝜕𝜕𝑦𝑦

=
𝑍𝑍𝑖𝑖 ,𝑗𝑗 +1 − 𝑍𝑍𝑖𝑖 ,𝑗𝑗

(∆𝑦𝑦)    (12) 

Substituting Eq. 12 into Eq.11, the expression for a clamped edge is: 

𝑍𝑍𝑖𝑖 ,𝑗𝑗 +1 − 𝑍𝑍𝑖𝑖 ,𝑗𝑗

(∆𝑦𝑦) − 𝑍𝑍𝑖𝑖 ,𝑗𝑗 = 0   (13) 

 

For a simply supported edge, 

𝑍𝑍 = 0   (14) 

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝜈𝜈

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 = 0   (15) 

Combining Eqs. 14 & 15, 

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝜈𝜈

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 − 𝑍𝑍 = 0   (16) 
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Expressed in forward finite differences with respect to x and in central finite differences 

with respect to y, Eq. 16 for a simply supported edge is: 

𝑍𝑍𝑖𝑖+2,𝑗𝑗 − 2𝑍𝑍𝑖𝑖+1,𝑗𝑗 + 𝑍𝑍𝑖𝑖 ,𝑗𝑗

(∆𝑥𝑥)2 + 𝜈𝜈
𝑍𝑍𝑖𝑖 ,𝑗𝑗 +1 − 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 + 𝑍𝑍𝑖𝑖 ,𝑗𝑗 −1

(∆𝑦𝑦)2 − 𝑍𝑍𝑖𝑖 ,𝑗𝑗 = 0   (17) 

For a free edge, 

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + 𝜈𝜈

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 = 0   (18) 

𝜕𝜕3𝑍𝑍
𝜕𝜕𝑦𝑦3 + (2 − 𝜈𝜈)

𝜕𝜕3𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦

= 0   (19) 

Combining Eqs. 18 & 19, 

𝜕𝜕3𝑍𝑍
𝜕𝜕𝑦𝑦3 + (2 − 𝜈𝜈)

𝜕𝜕3𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦

−
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 − 𝜈𝜈

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 = 0   (20) 

Expressing Eq. 20 with central finite differences with respect to x and backward finite 

differences with respect to y, the equation for a free edge is: 

𝑍𝑍𝑖𝑖 ,𝑗𝑗 − 3𝑍𝑍𝑖𝑖 ,𝑗𝑗 −1 + 3𝑍𝑍𝑖𝑖 ,𝑗𝑗 −2 + 𝑍𝑍𝑖𝑖 ,𝑗𝑗 −3

(∆𝑦𝑦)3

+ (2 − 𝜈𝜈)
𝑍𝑍𝑖𝑖+1,𝑗𝑗 − 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 + 𝑍𝑍𝑖𝑖−1,𝑗𝑗 − 𝑍𝑍𝑖𝑖+1,𝑗𝑗 −1 + 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 −1 − 𝑍𝑍𝑖𝑖−1,𝑗𝑗 −1

(∆𝑥𝑥)2(∆𝑦𝑦)

−
𝑍𝑍𝑖𝑖 ,𝑗𝑗 − 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 −1 + 𝑍𝑍𝑖𝑖 ,𝑗𝑗 −2

(∆𝑦𝑦)2 − 𝜈𝜈
𝑍𝑍𝑖𝑖+1,𝑗𝑗 − 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 + 𝑍𝑍𝑖𝑖−1,𝑗𝑗

(∆𝑥𝑥)2 = 0    (21) 

 

The boundary conditions that were used as well as where they were used are 

highlighted in Fig. 3. 
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Figure 3: Boundary Conditions at Specified Boundaries 
 

At the lower y boundary, the hydrogel was treated as a clamped edge while at the upper 

y boundary, it was treated as a free edge. Both of the x boundaries were treated as 

simply supported edges. It was also necessary to introduce buckling on the upper y 

boundary in the form of a sine curve. Without this, no solution other than zero across the 

whole surface can be calculated. Zero is a very good solution to the biharmonic 

equation. Therefore a reason for any other solution must be justified and introduced 

through the relevant equations. While this induced buckling boundary condition may not 

accurately describe the actual buckling phenomenon, it sets up a condition which could 

mimic an approximation of this behavior. 

 

Matrix Inversion as a Means of Solution 

 

Once the set of equations have been generated to map the behavior of the hydrogel 

strip, a solution to the conformation of the buckled surface must be obtained. Since the 

set of generated equations are linear in nature, a linear solving technique will be able to 

arrive at a solution. Matrix inversion was the method of choice due to ease of 

programming as well as it being a built in function in MATLAB. 
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Matrix inversion simply requires there to be a coefficient matrix as well as a solution 

matrix for the defined system. The coefficient matrix comes from the equations that are 

derived and that govern the materials behavior. The solution matrix takes into account 

certain known values that may exist and integrates them into finding a solution. For 

example, if the coefficient matrix is defined as C and the solution matrix as S, the 

expression to solve for the variable X would be: 

𝐶𝐶𝐶𝐶 = 𝑆𝑆 

Hence the solution with matrix inversion is 

𝐶𝐶 = 𝐶𝐶−1𝑆𝑆 

Once the solution was obtained, the values were then rearranged and plotted using the 

same grid point definition as highlighted in Fig. 2. 
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Analytical Solution 

 

Using the analytical solution of the biharmonic equation is a viable way to achieve 

numerical solutions to the buckling problem. While the results obtained through this 

method may not be representative of what happens experimentally, it does provide an 

insight into the nature of the mechanics of a very simplified case of this phenomenon. 

 

Separation of Variables 

 

The separation of variables technique was used to solve for the analytical solution of the 

biharmonic equation. While other methods exist, I am most familiar with this method and 

the solution is much easier to construct. My initial attempt at using this technique was 

unsuccessful. After reading further, I discovered that the separation of variables 

procedure would have to be used multiple times in order to produce a solution. 

Otherwise, if one of the functions with respect to a certain variable is presumed, the 

separation is much easier. The general procedure for this function’s variable separation 

is highlighted below. 

Assuming Z is a function of x and y only: 

𝑍𝑍(𝑥𝑥, 𝑦𝑦) = 𝐶𝐶(𝑥𝑥)𝑌𝑌(𝑦𝑦)   (22) 

Hence the biharmonic equation will yield 
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𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥4 + 2

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 +

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑦𝑦4 = 0 

𝑑𝑑4𝐶𝐶
𝑑𝑑𝑥𝑥4 𝑌𝑌 + 2

𝑑𝑑2𝐶𝐶
𝑑𝑑𝑥𝑥2

𝑑𝑑2𝑌𝑌
𝑑𝑑𝑦𝑦2 + 𝐶𝐶

𝑑𝑑4𝑌𝑌
𝑑𝑑𝑦𝑦4 = 0   (23) 

Dividing by XY: 

1
𝐶𝐶

𝑑𝑑4𝐶𝐶
𝑑𝑑𝑥𝑥4 + 2 �

1
𝐶𝐶

𝑑𝑑2𝐶𝐶
𝑑𝑑𝑥𝑥2 � �

1
𝑌𝑌

𝑑𝑑2𝑌𝑌
𝑑𝑑𝑦𝑦2� +

1
𝑌𝑌

𝑑𝑑4𝑌𝑌
𝑑𝑑𝑦𝑦4 = 0   (24) 

New variables can be defined that can separate this function into different parts. 

𝐶𝐶1(𝑥𝑥) =
1
𝐶𝐶

𝑑𝑑4𝐶𝐶
𝑑𝑑𝑥𝑥4 ;  𝐶𝐶2(𝑥𝑥) =

1
𝐶𝐶

𝑑𝑑2𝐶𝐶
𝑑𝑑𝑥𝑥2 ;  𝑌𝑌1(𝑦𝑦) =

1
𝑌𝑌

𝑑𝑑4𝑌𝑌
𝑑𝑑𝑦𝑦4 ;   𝑌𝑌2(𝑦𝑦) =

1
𝑌𝑌

𝑑𝑑2𝑌𝑌
𝑑𝑑𝑦𝑦2    (25) 

The new expression that contains these variables is: 

𝐶𝐶1 + 2𝐶𝐶2𝑌𝑌2 + 𝑌𝑌1 = 0   (26) 

Differentiating Eq. 26 with respect to x: 

𝑑𝑑𝐶𝐶1

𝑑𝑑𝑥𝑥
+ 2𝑌𝑌2

𝑑𝑑𝐶𝐶2

𝑑𝑑𝑥𝑥
= 0   (27) 

Which simplifies to: 

𝑑𝑑𝐶𝐶1

𝑑𝑑𝑥𝑥
𝑑𝑑𝐶𝐶2

𝑑𝑑𝑥𝑥
= −2𝑌𝑌2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�    (28) 

Differentiating Eq. 26 with respect to y: 

𝑑𝑑𝑌𝑌1

𝑑𝑑𝑦𝑦
+ 2𝐶𝐶2

𝑑𝑑𝑌𝑌2

𝑑𝑑𝑦𝑦
= 0 

Which simplifies to: 
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𝑑𝑑𝑌𝑌1

𝑑𝑑𝑦𝑦
𝑑𝑑𝑌𝑌2

𝑑𝑑𝑦𝑦
= −2𝐶𝐶2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (29)�  

Using Eqn. 29 and defining a constant as λ2, 

𝐶𝐶2 =
1
𝐶𝐶

𝑑𝑑2𝐶𝐶
𝑑𝑑𝑥𝑥2 = −𝜆𝜆2   (30) 

Therefore: 

𝑑𝑑2𝐶𝐶
𝑑𝑑𝑥𝑥2 + 𝜆𝜆2𝐶𝐶 = 0   (31) 

Eq. 31 has solutions of the form: 

𝐶𝐶(𝑥𝑥) = 𝐴𝐴𝑐𝑐𝑖𝑖𝑐𝑐(𝜆𝜆𝑥𝑥) + 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐(𝜆𝜆𝑥𝑥)   (32) 

Using Eq. 32 and solving for Eq. 25 shows that, 

𝐶𝐶1(𝑥𝑥) =
1
𝐶𝐶

𝑑𝑑4𝐶𝐶
𝑑𝑑𝑥𝑥4 = 𝜆𝜆4   (33) 

Substituting Eqs. 30 & 33 into Eq. 26 yields: 

1
𝑌𝑌

𝑑𝑑4𝑌𝑌
𝑑𝑑𝑦𝑦4 − 2𝜆𝜆2 �

1
𝑌𝑌

𝑑𝑑2𝑌𝑌
𝑑𝑑𝑦𝑦2� + 𝜆𝜆4 = 0   (34) 

Multiply by Y: 

𝑑𝑑4𝑌𝑌
𝑑𝑑𝑦𝑦4 − 2𝜆𝜆2 𝑑𝑑2𝑌𝑌

𝑑𝑑𝑦𝑦2 + 𝜆𝜆4𝑌𝑌 = 0   (35) 

The solution to Eq. 35 can be expressed in terms of exponentials, trigonometric 

functions or a combination of both. Different combinations have been used and in 

different ways [8, 9], but the y function in terms of exponentials can be expressed as: 
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𝑌𝑌(𝑦𝑦) = 𝐶𝐶1𝑒𝑒𝜆𝜆𝑦𝑦 + 𝐶𝐶2𝑒𝑒−𝜆𝜆𝑦𝑦 + 𝐶𝐶3𝑦𝑦𝑒𝑒𝜆𝜆𝑦𝑦 + 𝐶𝐶4𝑦𝑦𝑒𝑒−𝜆𝜆𝑦𝑦    (36) 

Therefore, the overall expression for Z using Eqs. 32 & 36 is: 

𝑍𝑍(𝑥𝑥, 𝑦𝑦) = [𝐴𝐴𝑐𝑐𝑖𝑖𝑐𝑐(𝜆𝜆𝑥𝑥) + 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐(𝜆𝜆𝑥𝑥)]�𝐶𝐶1𝑒𝑒𝜆𝜆𝑦𝑦 + 𝐶𝐶2𝑒𝑒−𝜆𝜆𝑦𝑦 + 𝐶𝐶3𝑦𝑦𝑒𝑒𝜆𝜆𝑦𝑦 + 𝐶𝐶4𝑦𝑦𝑒𝑒−𝜆𝜆𝑦𝑦 �   (37) 

From observed experiments it is fair to assume that the buckling modes take on a 

sinusoidal shape as a function of x. Hence the known function behavior will be a sine 

function with respect to x. Implementing this into the biharmonic equation in terms of 

displacement yields the following results. 

∇4Z =
∂4Z
∂x4 +

∂4Z
∂y4 + 2

∂4Z
∂x2 ∂y2 = 0    

Z = 𝑓𝑓(𝑥𝑥)𝑓𝑓(𝑦𝑦)  ;  𝑓𝑓(𝑥𝑥) = sin(𝛼𝛼𝑚𝑚 𝑥𝑥)  

 

∇4Z = 𝛼𝛼𝑚𝑚
4sin(𝛼𝛼𝑚𝑚 𝑥𝑥)𝑓𝑓(𝑦𝑦) + sin(𝛼𝛼𝑚𝑚 𝑥𝑥)

∂4𝑓𝑓(𝑦𝑦)
∂y4 − 2 𝛼𝛼𝑚𝑚

2 sin(𝛼𝛼𝑚𝑚 𝑥𝑥)
∂2𝑓𝑓(𝑦𝑦)

∂y2   

=  sin(𝛼𝛼𝑚𝑚 𝑥𝑥) �
∂4𝑓𝑓(𝑦𝑦)

∂y4 − 2𝛼𝛼𝑚𝑚
2 ∂2𝑓𝑓(𝑦𝑦)

∂y2 + 𝛼𝛼𝑚𝑚
4𝑓𝑓(𝑦𝑦)� = 0   (38) 

The final result shows that the variables can be separate. However, we still do not know 

what the y function is. If Eq. 38 is divided by sin(αmx), the result is: 

∂4𝑓𝑓(𝑦𝑦)
∂y4 − 2𝛼𝛼𝑚𝑚

2 ∂2𝑓𝑓(𝑦𝑦)
∂y2 + 𝛼𝛼𝑚𝑚

4𝑓𝑓(𝑦𝑦) = 0   (39) 

Solving Eq. 39 will give rise to a similar solution as Eq. 35. Using one of the possible 

solutions, the y function can be expressed as: 

𝑓𝑓(𝑦𝑦) = 𝐶𝐶1𝑒𝑒𝛼𝛼𝑚𝑚 𝑦𝑦 + 𝐶𝐶2𝑒𝑒−𝛼𝛼𝑚𝑚 𝑦𝑦 + 𝐶𝐶3𝑦𝑦𝑒𝑒𝛼𝛼𝑚𝑚 𝑦𝑦 + 𝐶𝐶4𝑦𝑦𝑒𝑒−𝛼𝛼𝑚𝑚 𝑦𝑦    (40) 

The overall expression for Z would then be: 

𝑍𝑍 = sin(𝛼𝛼𝑚𝑚 𝑥𝑥) [𝐶𝐶1𝑒𝑒𝛼𝛼𝑚𝑚 𝑦𝑦 + 𝐶𝐶2𝑒𝑒−𝛼𝛼𝑚𝑚 𝑦𝑦 + 𝐶𝐶3𝑦𝑦𝑒𝑒𝛼𝛼𝑚𝑚 𝑦𝑦 + 𝐶𝐶4𝑦𝑦𝑒𝑒−𝛼𝛼𝑚𝑚 𝑦𝑦 ]   (41) 
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Now that the there is an expression for Z, exact values have to be determined for the 

constants. This procedure is detailed in the following section. 

 

Using Boundary Conditions to Solve for Constants 

 

There are known solutions to the biharmonic equation which can be used directly. The 

previous two sections highlighted methods as to how these solutions can be obtained. 

The next step requires the use of boundary conditions to solve for the constants followed 

by the functions implementation. The series solution, shown below, is another example 

of an existing solution that can be used to solve this problem. 

𝑍𝑍(𝑥𝑥, 𝑦𝑦) = � � 𝐶𝐶𝑚𝑚𝑐𝑐 𝑥𝑥𝑚𝑚 𝑦𝑦𝑐𝑐

𝛽𝛽

𝑐𝑐=0

𝛼𝛼

𝑚𝑚 =0

   (42) 

Where α and β are the highest orders to which the x and y variables exhibit respectively. 

Then only thing that would be needed to use this solution are values of Cmn. 

For the case of a uniaxial compression in the x direction, a modified form of the 

biharmonic equation is required. This function is shown below. 

∇4𝑍𝑍 =
1
𝐷𝐷

�𝑁𝑁𝑥𝑥
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝑁𝑁𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + 2𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

�    (43) 

Since the only force acting is in the x direction, NY and NXY are set equal to zero. Also, 

because the force is a compression force, NX should undergo a sign change. Hence the 

expression becomes: 

∇4𝑍𝑍 = −
𝑁𝑁𝑥𝑥

𝐷𝐷
�

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2�    (44) 

Due to this modification, the y function will take on a different form. 
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𝑓𝑓(𝑦𝑦) = 𝐶𝐶1𝑒𝑒−𝛼𝛼𝑦𝑦 + 𝐶𝐶2𝑒𝑒𝛼𝛼𝑦𝑦 + 𝐶𝐶3𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽𝑦𝑦) + 𝐶𝐶4𝑐𝑐𝑖𝑖𝑐𝑐(𝛽𝛽𝑦𝑦)  (45) 

𝛼𝛼𝑚𝑚 =
𝑚𝑚𝑚𝑚
𝑊𝑊

;   𝛼𝛼 = �𝛼𝛼𝑚𝑚
2 + �𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2 ;  𝛽𝛽 = �−𝛼𝛼𝑚𝑚
2 + �𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2 

Hence the expression for Z will be: 

𝑍𝑍 = sin(𝛼𝛼𝑚𝑚 𝑥𝑥) [𝐶𝐶1𝑒𝑒−𝛼𝛼𝑦𝑦 + 𝐶𝐶2𝑒𝑒𝛼𝛼𝑦𝑦 + 𝐶𝐶3𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑦𝑦 + 𝐶𝐶4𝑐𝑐𝑖𝑖𝑐𝑐𝛽𝛽𝑦𝑦]   (46) 

The boundary conditions from Eqs. 9, 10, 18 &19 provide four independent equations for 

the four unknown constants. These boundary conditions as well as the expressions they 

provide are shown below. 

When 𝑦𝑦 = 0, 𝑍𝑍 = 0 

𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3 = 0   (47) 

When 𝑦𝑦 = 0, 𝜕𝜕𝑍𝑍
𝜕𝜕𝑦𝑦

= 0 

−𝛼𝛼𝐶𝐶1 + 𝛼𝛼𝐶𝐶2 + 𝛽𝛽𝐶𝐶4 = 0   (48) 

When 𝑦𝑦 = 𝐿𝐿, 𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦 2 + 𝜈𝜈 𝜕𝜕2𝑍𝑍

𝜕𝜕𝑥𝑥 2 = 0 

(𝛼𝛼2𝑒𝑒−𝛼𝛼𝐿𝐿 − 𝛼𝛼𝑚𝑚
2𝜈𝜈𝑒𝑒−𝛼𝛼𝐿𝐿 )𝐶𝐶1 + (𝛼𝛼2𝑒𝑒𝛼𝛼𝐿𝐿 − 𝛼𝛼𝑚𝑚

2𝜈𝜈𝑒𝑒𝛼𝛼𝐿𝐿 )𝐶𝐶2 + (−𝛽𝛽2 cos(𝛽𝛽𝐿𝐿) − 𝛼𝛼𝑚𝑚
2𝜈𝜈 cos(𝛽𝛽𝐿𝐿))𝐶𝐶3

+ (−𝛽𝛽2 sin(𝛽𝛽𝐿𝐿) − 𝛼𝛼𝑚𝑚
2𝜈𝜈 sin(𝛽𝛽𝐿𝐿))𝐶𝐶4 = 0   (49) 

When 𝑦𝑦 = 𝐿𝐿, 𝜕𝜕3𝑍𝑍
𝜕𝜕𝑦𝑦 3 + (2 − 𝜈𝜈) 𝜕𝜕3𝑍𝑍

𝜕𝜕𝑥𝑥 2𝜕𝜕𝑦𝑦
= 0  

(−𝛼𝛼3𝑒𝑒−𝛼𝛼𝐿𝐿 + (2 − 𝜈𝜈)𝛼𝛼𝑚𝑚
2𝛼𝛼𝑒𝑒−𝛼𝛼𝐿𝐿 )𝐶𝐶1 + �𝛼𝛼3𝑒𝑒𝛼𝛼𝐿𝐿 − (2 − 𝜈𝜈)𝛼𝛼𝑚𝑚

2𝛼𝛼𝑒𝑒𝛼𝛼𝐿𝐿 �𝐶𝐶2

+ �𝛽𝛽3 sin(𝛽𝛽𝐿𝐿) + (2 − 𝜈𝜈)𝛼𝛼𝑚𝑚
2 𝛽𝛽sin(𝛽𝛽𝐿𝐿)�𝐶𝐶3

+ �−𝛽𝛽3 cos(𝛽𝛽𝐿𝐿) − (2 − 𝜈𝜈)𝛼𝛼𝑚𝑚
2 𝛽𝛽cos(𝛽𝛽𝐿𝐿)�𝐶𝐶4 = 0   (50) 
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These equations are linear and hence can be solved using a linear solver. The 

coefficient matrix used for this set of equations is shown below. 

( ) ( )

( ) ( )

2 2 2 2

3 2 3 2

2 2 2 2

3 2 3 2

1 1

2 2

1 0
0

cos cos sin sin
sin 2 sin cos 2 cos

L L L L
m m

L L L L
m m

m m

m m

e e e e
e e e e

L L L L
L L L L

α α α α

α α α α

α α
α α ν α α ν

α ν α α α ν α α

β
β β α ν β β β α ν β

β β ν α β β β β ν α β β

− −

− −


 −
 − −
− + − − −




− − − −
+ − − − − 

 

The solution to a buckling problem requires that the determinant of the coefficient matrix 

for this set of equations to have a determinant of zero[2, 4, 9]. This means that the 

matrix cannot be inverted since it will be a singular matrix. Therefore matrix inversion will 

not be capable of arriving at a solution. However, the matrix can be modified to reduced 

row echelon form which will then leave four simplified equations. The fourth equation 

does not provide any relevant information so there are only three useful equations 

remaining. Because of this, any nonzero value for the fourth constant can be used and 

the rest of the equations can then be satisfied. The other three constants will be factors 

of the fourth constant because of this. 

The expression for the determinant of this system is: 

( ) ( )( )
( )( )( )

( ) ( )( )
( ) ( )( )

2 2 3 2

3 2 2 2

2 2 3 2

2 2 3 2

cos cos cos 2 cos

sin 2 sin sin sin

sin 2 sin

cos cos 2

m m

m m

L L
m m

L L
m m

L L L L

L L L L

e e L L

L L e e

α α

α α

β β α ν β β β ν α β β
α

β β ν α β β β β α ν β

α α ν β β ν α β β
β

β β α ν β α ν α α

  − − − − − −
  
  + − − −   −  − + − −  +  − − − −   
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( ) ( )( )
( )( )( )

( ) ( )( )
( ) ( )( )

2 2 3 2

3 2 2 2

2 2 3 2

2 2 3 2

cos cos cos 2 cos

sin 2 sin sin sin

sin 2 sin

cos cos 2

m m

m m

L L
m m

L L
m m

L L L L

L L L L

e e L L

L L e e

α α

α α

β β α ν β β β ν α β β
α

β β ν α β β β β α ν β

α α ν β β ν α β β
β

β β α ν β α ν α α

− −

− −

  − − − − − −
  −
  + − − −   +  − + − −  +  − − − + −   

 
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

2 2 3 2

2 2 3 2

2 2 3 2

2 2 3 2

2 2 3 2

2

cos 2 cos

sin sin 2

cos 2 cos

sin sin 2

2

L L
m m

L L
m m

L L
m m

L L
m m

L L L L
m m

e e L L

L L e e

e e L L

L L e e

e e e e

e

α α

α α

α α

α α

α α α α

α α ν β β ν α β β
α

β β α ν β α ν α α

α α ν β β ν α β β
α

β β α ν β α ν α α

α α ν α ν α α
β

α

− −

− −

− −

 − − − − −
 −
 − − − − 
 − − − − −
 −
 − − − + − 

− − − −
+

( ) ( )( )2 3 2

(51)

2L L L L
m me e eα α α αα ν α ν α α− −

 
 
 
 
 
 
 
 
 

     − − + −   

 

Once values have been selected that give rise to a determinant equal to zero, using Eq. 

51, the value of the constants in the buckling equation can be obtained. With the function 

well defined, an analysis can now be done on the variables that are present within the 

equation. This analysis will give rise to critical values and show where the threshold of 

stability lies due to a change in certain function parameter values. 
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Determination of Critical Buckling Values 

 

A key aspect of buckling analysis is the amount of stress a body can endure before is 

goes unstable and buckles. This analysis provides an insight into the effect that certain 

material properties have on the material’s stability. By varying properties like the 

hydrogel’s length, width, modulus of rigidity, Poisson ratio, and magnitude of 

compression, the effect of these changes on buckling can be observed. Likewise, the 

critical values of these parameters can also be determined. The critical value of a 

parameter represents a point where an increase or decrease from this point will cause 

instability. Whether that change should be an increase or a decrease depends on 

whether the plot of the parameter is a minimum or maximum curve. The methods 

required to obtain these values are detailed in the following sections. 

 

Failure of Plane Strain Assumption 

 

The plane strain assumption implies that there is no reason for there to be displacement 

in any direction other than those within the plane being subjected to stress[5, 7]. For 

example, if a material is being stressed in the x and y directions, then there should only 

be displacement in those directions. However, if the magnitude of the applied force 

increases, there is a point at which the plane strain assumption ceases to apply. This is 

when buckling occurs. This is due to an instability in the solution of the biharmonic 

equation which occurs when the determinant of the coefficient matrix for the equation’s 

constants equals zero. From this particular moment, a lot of information can be 
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determined. Various parameters within the equation can be changed and their effect on 

the buckling solution can be observed. 

 

Determinant Method for Critical Buckling Values 

 

Using the analytical solution to the biharmonic equation, the magnitude of the critical 

force or pressure required for buckling can be determined. Similar work has been done 

which verifies that these quantities can be obtained[2]. 

Eq. 51 is the expression that represents the determinant for the solution to the constants 

in Eq. 46. As mentioned before, setting this determinant to zero will be representative of 

the instability and the buckling phenomenon. Once this is done, it is desired to determine 

how much compression force is necessary to cause different buckling modes to occur. 

So, using the same determinant expression, the value of m was changed. 

Simultaneously, with each change of m, the minimum value of NX was solved for. It is 

crucial that the value of NX be the lowest possible solution to Eq. 51. Fig. 4 shows that 

there are multiple solutions that exist that will result in a determinant equal to zero. Since 

it is the goal to obtain the critical value of NX, we have to observe what the smallest 

possible value is that will cause buckling to occur. 
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Figure 4: Determinant Behavior w.r.t. Nx 
 

The result of this procedure gives rise to a plot like the one shown in Fig. 5. Clearly there 

is a minimum value of NX and a corresponding value of m to go with it. This minimum 

point signifies the minimum amount of compressive force required to buckle. While the 

value of m at that point represents the number of half waves that would be expected in 

the buckled conformation. 
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Figure 5: Plot of Solution of Critical Values of Nx 
 

This procedure can be further expanded to determine the critical values of other 

parameters. However, just like the compression force, the determinant must be analyzed 

so that the minimum value of the parameter is used and not just any value that satisfies 

the determinant criteria. 

The finite difference method could also be used to determine the critical values. A 

nonzero solution to the deflection surface would also come about when the determinant 

of the coefficient matrix is equal to zero. The only difference is the number of equations 

that will have to be used in order to solve for the values. For the sake of simplicity and 

ease of programming, this procedure was not used. 
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Energy Method 

 

The forces of compression acting on the hydrogel perform work on the hydrogel. 

Because of this there is a certain amount of work that once exceeded, will give rise to an 

instability and cause the onset of buckling. This energy is called the strain energy. It is 

defined below with the following equation[9]: 

𝑈𝑈 =
𝐷𝐷
2

� � ��
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2�

2

− 2(1 − 𝜈𝜈) �
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 − �

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

�
2

�� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦   (52) 

There will then be a minimum value of the strain energy that will give rise to a critical 

amount of buckling. What this amount is depends on how much work is done. The 

equation for the work done on the hydrogel is shown below: 

𝑊𝑊 = −
1
2

� � �𝑁𝑁𝑥𝑥 �
𝜕𝜕𝑍𝑍
𝜕𝜕𝑥𝑥

�
2

+ 𝑁𝑁𝑦𝑦 �
𝜕𝜕𝑍𝑍
𝜕𝜕𝑦𝑦

�
2

+ 2𝑁𝑁𝑥𝑥𝑦𝑦
𝜕𝜕𝑍𝑍
𝜕𝜕𝑥𝑥

𝜕𝜕𝑍𝑍
𝜕𝜕𝑦𝑦

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦   (53) 

Since there is only compression in the x direction, 

𝑊𝑊 = −
1
2

� � �𝑁𝑁𝑥𝑥 �
𝜕𝜕𝑍𝑍
𝜕𝜕𝑥𝑥

�
2

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦   (54) 

To determine what the critical magnitude of compression is, both of the work and the 

strain energy have to be equal at a minimum value of the strain energy. So setting the 

work and strain energy equal to one another: 

𝑈𝑈 = 𝑊𝑊 
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𝐷𝐷
2

� � ��
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2�

2

− 2(1 − 𝜈𝜈) �
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 − �

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

�
2

�� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

= −
1
2

� � �𝑁𝑁𝑥𝑥 �
𝜕𝜕𝑍𝑍
𝜕𝜕𝑥𝑥

�
2

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦   (55) 

Therefore: 

𝐷𝐷
2

� � ��
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2�

2

− 2(1 − 𝜈𝜈) �
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 − �

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

�
2

�� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 +
1
2

� � �𝑁𝑁𝑥𝑥 �
𝜕𝜕𝑍𝑍
𝜕𝜕𝑥𝑥

�
2

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

= 0   (56) 

The solutions to the work and strain energy equations are very complicated. The 

solutions were obtained using the Symbolic Math Toolbox in MATLAB. Since an 

analytical solution exists for Z, this was used in the equations and the integrals as well 

as the derivatives were then evaluated. The integrals were also evaluated within their 

limits of zero to W and zero to L for x and y respectively.  

Eq. 56 can be used to solve for the necessary critical values in the same manner as with 

Eq. 51. The value of m can be changed and the desired critical value can be solved for. 

Fig. 6 shows a plot of the work and strain energy coming together at a particular point. 

That point is the critical value of NX when m is one and this value is in agreement with 

the value calculated through the determinant method. 
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Figure 6: Work and Strain Energy Plots Used for Critical Values of Nx 
 

This method can also be used to determine the critical values of other parameters. Due 

to the length and complexity of the programming code, the determinant method was the 

preferred method of solution. 
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Bending and Wasted Modes of Buckling 

 

When a swollen hydrogel buckles it has been observed that this can occur in one of two 

ways[2, 15]. These types of buckling can be called bending and wasted modes of 

buckling. Both of these modes are shown in Fig. 7.  

 

 

Figure 7: a) Wasted and b) Bending Modes of Buckling 
 

The reason for this difference in buckling behavior is not well understood. Hence it is 

desired to possibly find out why this difference occurs as well as what factors affect it. 

 

Equations Involved with Different Buckling Modes 

 

An analysis exists which can describe the bending and wasted buckling modes. This 

analysis is similar to what was done with the analytical solution, however there are some 

differences. This analysis defines the flat plate or strip being in the x and z plane. The 

compression is still applied in the x direction and all other characteristics are the same. 
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Looking at the problem from this perspective will show a view from the top of how the 

hydrogel buckles. The equations required for this analysis are shown below. 

The equations used in the biharmonic equation for a compressible and incompressible 

strip respectively are: 

𝜒𝜒 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑚𝑚 x)𝑓𝑓(𝑧𝑧)   (57) 

𝜒𝜒 = 𝑐𝑐𝑖𝑖𝑐𝑐(𝛼𝛼𝑚𝑚 x)𝑓𝑓(𝑧𝑧)   (58) 

The overall governing equation that applies to compressible and incompressible strips 

for the z function is: 

�
𝑑𝑑2

𝑑𝑑𝑧𝑧2 − (𝛼𝛼𝑚𝑚 𝜂𝜂2)2� �
𝑑𝑑2

𝑑𝑑𝑧𝑧2 − (𝛼𝛼𝑚𝑚 𝜂𝜂3)2� 𝑓𝑓(𝑧𝑧) = 0 

𝑑𝑑4𝑓𝑓(𝑧𝑧)
𝑑𝑑𝑧𝑧4 − (𝛼𝛼𝑚𝑚 𝜂𝜂2)2 𝑑𝑑2𝑓𝑓(𝑧𝑧)

𝑑𝑑𝑧𝑧2 − (𝛼𝛼𝑚𝑚 𝜂𝜂3)2 𝑑𝑑2𝑓𝑓(𝑧𝑧)
𝑑𝑑𝑧𝑧2 + (𝛼𝛼𝑚𝑚 𝜂𝜂2)2(𝛼𝛼𝑚𝑚 𝜂𝜂3)2𝑓𝑓(𝑧𝑧) = 0   (59) 

If 2 3η η≠ , then the equations for the bending and wasted modes of buckling 

respectively are: 

𝑓𝑓(𝑧𝑧) = 𝐴𝐴1𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛼𝛼𝑚𝑚 𝜂𝜂2)𝑧𝑧 + 𝐴𝐴2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛼𝛼𝑚𝑚 𝜂𝜂3)𝑧𝑧   (60) 

𝑓𝑓(𝑧𝑧) = 𝐴𝐴1𝑐𝑐𝑖𝑖𝑐𝑐ℎ(𝛼𝛼𝑚𝑚 𝜂𝜂2)𝑧𝑧 + 𝐴𝐴2𝑐𝑐𝑖𝑖𝑐𝑐ℎ(𝛼𝛼𝑚𝑚 𝜂𝜂3)𝑧𝑧   (61) 

If 2 3η η= , then the equations for the bending and wasted modes of buckling 

respectively are: 

𝑓𝑓(𝑧𝑧) = 𝐴𝐴1𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛼𝛼𝑚𝑚 𝜂𝜂2)𝑧𝑧 + 𝐴𝐴2𝑐𝑐𝑖𝑖𝑐𝑐ℎ(𝛼𝛼𝑚𝑚 𝜂𝜂3)𝑧𝑧   (62) 

𝑓𝑓(𝑧𝑧) = 𝐴𝐴1𝑐𝑐𝑖𝑖𝑐𝑐ℎ(𝛼𝛼𝑚𝑚 𝜂𝜂2)𝑧𝑧 + 𝐴𝐴2𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛼𝛼𝑚𝑚 𝜂𝜂3)𝑧𝑧   (63) 
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Similar to what was highlighted before, the method for solving the constants in this 

equation require the use of the boundary conditions. With the boundary conditions 

expressed, a set of linear equations exist which can hence be solved. The instability 

results when the determinant of the coefficient matrix for this problem equal zero.  

Unfortunately this analysis tells us nothing about why these phenomena occur. All that is 

presented are equations that mimic both phenomena separately. In my opinion, one 

equation should be capable of showing how there could be a transition from one type of 

buckling to the other based on certain property changes within the hydrogel strip. 

 

Possible Reasons for Different Buckling Modes 

 

It has also been observed that the dimensions of the confined hydrogel play a distinct 

role in determining which of these modes occur[2]. When the hydrogel’s thickness in the 

z direction increases, there is an overall decrease in the amount of buckling that is 

observed. This could be due to a number of reasons but one of them seems to be very 

reasonable.  

 

 

Figure 8: Buckling Transition from One Mode to Another 
 

Observe the hydrogel in Fig. 8. As the hydrogel is thickened, its volume is increased 

assuming that it is still the same height. Yet since it is still a part of the same hydrogel, 
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when it is swollen, it undergoes the same magnitude of compression as the rest of the 

gel. However, the part of the gel with a greater thickness will undergo less pressure 

while the thinner part will undergo more. The greatest magnitude of buckling is observed 

at the free edge which is farthest away from the confined surface. This causes a gradient 

in buckling which would then be a function of the thickness or the amount of pressure 

that that region experiences uniaxially. 

The magnitude of compression in the z direction may also increase as the hydrogel gets 

thicker. To analyze this theory, a more complicated analysis is necessary which will 

require three dimensional analysis of the buckling problem. While the theoretical 

framework exists for three dimensional analysis of buckling, substantial modifications 

would have to be made to fit the theory to this problem.  
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Results 

 

With all of the mentioned methods of solving the buckling problem, the goal is to 

determine approximately how much buckling can be expected for a specific size of 

confined polymer. Also, noting how changing different properties of the hydrogel can 

give rise to different magnitudes or types of buckling. 

 

Finite Difference Solution 

 

The finite difference solution is only capable of arriving at an approximation of the 

buckled deflection surface of the hydrogel. After using the appropriate boundary 

conditions to describe the gel, the approximation seems to only be able to mimic the 

edge undulation or the wasted form of the buckling. Curvature was induced on the free 

edge and the boundary conditions described in Eqs. 9,10,14,15,18 and 19 were used as 

well. 

Combinations of forward, backward, and central finite difference schemes were used to 

define the coefficient matrix. Trial and error methods were used to determine the 

combinations of finite differences that made the system most stable. A spy of the 

coefficient matrix is shown in Fig. 9. The dots represent the places in the matrix where 

there are values. This coefficient matrix is solving for a total of one hundred grid points 

arranged in a five by twenty grid.  
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Figure 9: Spy of the Coefficient Matrix of Finite Difference Problem 
 

Due to the fact that the stability of the finite difference solution is of great importance, 

limitations exist in regards to the number of grid points that can be used. Fig. 10 shows 

how changes in the number of grid points in the y direction affect the solution. The grid 

points were increased from four, to five, and then to six. When there are more than five 

grid points, the solution is no longer stable.  
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Figure 10: Solution Instabilities with Different Numbers of Grid Points on the y 
Axis. Twenty grid points were used on the x Axis and a) four b) five and c) six 

points were used on the y axis. 
 

Fig. 11 shows how the number of grid points on the x direction affect the stability of the 

solution. The grid points were increased from twenty, to thirty, and then to thirty four. 

Thirty grid points in this direction seem appropriate. While thirty two grid points seem to 

be the threshold of stability, there is no need to perform the unnecessary calculations as 

no new information is gained by doing this. 
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Figure 11: Solution Instabilities with Different Numbers of Grid Points on the x 
Axis. Five grid points were used on the y Axis and a) twenty b) thirty and c) thirty 
four were used on the x axis. 
 

Fig. 11b shows the most stable solution to the problem with the greatest amount of grid 

points allowed. There are thirty grid points in the x direction and five in the y direction.  

 

Analytical Solution 

 

The analytical solution was used to perform multiple tasks. It was first used to verify the 

buckled deflection surface predicted by the finite difference approximation. Then, the 

critical values of the wavelength and compressive stress were determined so that 

relationships between the parameters in the equation could be found. 

Fig. 12 shows the analytical solution of the buckled deflection surface.  
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Figure 12: An Analytical Solution with Five Half Waves 
 

Upon changing the parameters in the analytical equation, there was no noticeable 

change in the type of buckling that was observed. For this reason, the analytical solution 

as it is seems to only be capable of mimicking the bending mode of buckling just like the 

finite difference solution. 

 

Determinants 

 

The analysis of the behavior of the determinants with respect to each parameter is very 

necessary. If changes in the parameter do not cause the determinant to equal zero, then 

that parameter cannot cause buckling to occur. This can also show ahead of time what 

can be expected for the critical buckling values. 

Fig. 13 shows a plot of how the determinant behaves using the determinant method to 

solve for the critical values of Nx. There are two nonzero solutions that satisfy the 

determinant criteria for every value of m. The minimum value of the solution was 

selected since this value would represent the minimum possible amount of compression 

required for buckling. 
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Figure 13: Determinant Behavior w.r.t. Nx at Different Values of m 
 

Fig. 14 shows the effect that the flexural rigidity has on the determinant. Unlike any of 

the other parameter analyses, the flexural rigidity has only one solution that satisfies the 

determinant criteria. 
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Figure 14: Determinant Behavior w.r.t. Flexural Rigidity at Different Values of m 

 

Fig. 15 shows how the ratio of length to width affects the determinant. Upon further 

analysis, it was observed that there are infinite solutions that satisfy the determinant 

criteria with the length and width ratio. As the length to width ratio is increased, the 

behavior of the determinant becomes more and more unstable. Increasing the value of 

the length to width ratio causes the values of the determinant to deviate further to higher 

amplitudes in an unstable sine curve way. 
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Figure 15: Determinant Behavior w.r.t. Length and Width Ratio 
 

Analysis of the Poisson ratio shows that this parameter can have an effect on the 

buckling behavior. However the points at which the solutions occur are out of range for 

an elastic material. An elastic material’s Poisson ratio is between zero and one and there 

were very few solutions that fell within this range. 

 

Critical Values 

 

All of the determinant values for the respective parameters highlighted in the previous 

section were solved for at different values of the wavenumber. The critical value plots all 

have a unique characteristic. There is either a minimum or a maximum point which 

highlights a limit for that parameter. What that limit means or represents depends on the 

parameter being analyzed. 
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Fig. 16 shows the critical values of flexural rigidity obtained at different values of Nx. 

 

Figure 16: Critical Values of Flexural Rigidity at Different Values of m and Nx 
 

All of the critical flexural rigidity curves have a maximum value. This maximum is the 

largest possible value of flexural rigidity that can cause buckling. This, in theory, does 

make sense. If an object is more rigid, it is less likely to buckle. So there should be an 

upper limit of this value, above which no buckling will occur. Increasing the magnitude of 

compression increases this maximum value. This also makes sense because a larger 

force of compression will be able to counter the effects of a more rigid body or a greater 

value of flexural rigidity. 

Fig. 17 shows the critical values of Nx obtained at different values of flexural rigidity. 
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Figure 17: Critical Values of Nx at Different Values of m and Flexural Rigidity 
 

Similar to the analysis of Fig. 16, the behavior of the critical values can be explained. An 

increase in the value of flexural rigidity will result in a greater force of compression 

necessary to cause buckling. In both Figs. 16 & 17, these changes have no effect on the 

wavenumber at which buckling occurs. Hence these changes have no effect on the 

wavelength or the number of observed buckles on the deflection surface. 

Fig. 18 shows the critical values of Nx and how they are affected by changes in the 

length to width ratio. 
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Figure 18: Critical Values of Nx at Different Values of m and Length to Width Ratio 
 

Assuming that the length of the hydrogel is kept at a constant value, the width of the 

hydrogel can be changed to give rise to different values of the length to width ratio. So 

an increase in the width of the hydrogel will give rise to a decrease in the length to width 

ratio. Therefore, Fig. 18 shows that increasing the width of the hydrogel causes an 

increase in the minimum critical amount of compression necessary for buckling.  

The changes in the length to width ratio also cause a shift in the critical buckling 

wavenumber. Increasing the width of the hydrogel causes the critical wavenumber to 

increase. This means that increasing the width of the hydrogel will cause an increase in 

the number of observed buckles on the deflection surface. 

Fig. 19 shows the critical values of the length to width ratio and how changes in Nx affect 

them. 
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Figure 19: Critical Values of Length to Width Ratio at Different Values of m and Nx 
 

This result is in direct correspondence to results obtained in Fig. 18. A wider hydrogel 

requires a greater amount of compression to cause buckling. Therefore more 

compression will cause a decrease in the critical ratio of length to width. The increase in 

compression will also cause an increase in the critical buckling wavenumber. This is 

equivalent to the relationship in Fig. 18 where a decrease in the length to width ratio also 

causes an increase in the critical buckling wavenumber. 

The obtained results overall, highlight key relationships that exist between the 

parameters that are present in the thin plate buckling analysis. In reality however, these 

parameters may not necessarily be so separate and easy to control. If they can be 

controlled, the general trends of the observed relationships should still retain their 

validity. 
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Conclusion 

 

The buckling phenomenon, in reality, is quite complex. However, assumptions can be 

made to simplify the problem and make analysis more feasible. Treating a surface 

confined polymer hydrogel like a thin plate subject to compression is a way to simplify 

the problem yet find out something about its buckling behavior. There are different 

methods of solving the equations governing this problem, but the desire to obtain 

quantities that are representative of this phenomenon requires the use of the analytical 

solution to the problem. 

The relationships obtained from the analytical solution were able to show how the 

flexural rigidity, magnitude of compression, and the length to width ratio affected the 

buckling behavior. The length to width ratio is a parameter that is easy to control. 

However, being able to change the flexural rigidity and the magnitude of compression 

may introduce a new set of factors that would have to be analyzed. 

For example, increasing the cross link density within the hydrogel may cause an 

increase in the value of the flexural rigidity. But this increase in cross link density may 

also limit the amount of water that can diffuse into the hydrogel. The amount of diffused 

water could very well determine the amount of compression that the hydrogel 

undergoes. As a result, both of these parameters, flexural rigidity and the magnitude of 

compression, depend on the cross link density. The relationship that exists between 

these quantities will have to be determined in order to have the desired control over 

them and hence the desired amount of buckling. Other relationships that are coupled to 
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a single parameter may exist and they must also be analyzed to see how they affect the 

key buckling parameters. 

The current framework does not however solve for the amplitude of the buckled solution. 

This is an important factor that is necessary to describe buckling behavior. But this 

parameter is definitely a function of the swelling ratio of the gel before and after swelling. 

If the gel swells to a size substantially greater than its initial size, then the amplitude of 

the buckles should increase. Experiments would have to be done to determine what the 

nature of this relationship may be as it is not included in the thin plate assumption. 

Another key analysis is the description of the bending and wasted modes of buckling. As 

was mentioned before, equations exist that describe the two phenomena separately. But 

a method of analysis must exist that shows how the transition would occur from one 

mode to the other. From what I have observed, the magnitude of compression in the z 

direction increases as the hydrogel gets thicker and this could explain the two different 

types of buckling. However, the appropriate equations would have to be used in order to 

verify that this idea has validity. Due to a lack of time, further analysis in this regard 

could not be pursued. 

Further experiments may also have to be done to verify that the described relationships 

from the thin plate assumption are accurate. For example, an experiment where the 

length of the gel is kept constant, yet different widths of the hydrogel are used would 

help to verify the length to width ratio relationships. 
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Appendix A: Nomenclature 

 

An,, Cn Cmn - Equation Constant 

C - Coefficient Matrix 

D - Flexural Rigidity 

exx,yy,xy - Strain Tensor Component 

Fx,y,z - Body Force 

L - Length of Hydrogel in y Direction 

m - Wavenumber (Number of Half 

Nx - Uniaxial Compression Force in the x Direction 

S - Solution Matrix 

W - Width of hydrogel in x Direction 

Z - Solution to Buckled Deflection Surface 

α, αm, β - Equation Parameters (defined in the next section) 

ν - Poisson Ratio 

η - Equation Parameter 

σxx,yy,xy - Stress Tensor Component 

ϕ - Potential Function 

λ - Equation Constant 
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Appendix B: Derivations of Finite Difference Equations 

 

Starting off with the finite difference equation of a second derivative: 

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 =

𝑍𝑍𝑖𝑖+1,𝑗𝑗 − 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 + 𝑍𝑍𝑖𝑖−1,𝑗𝑗

(∆𝑥𝑥)2  

The third order derivative is determined via the following equations: 

𝜕𝜕3𝑍𝑍
𝜕𝜕𝑥𝑥3 =

�𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2�

𝑥𝑥+∆𝑥𝑥
2

− �𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2�

𝑥𝑥−∆𝑥𝑥
2

∆𝑥𝑥
 

𝜕𝜕3𝑍𝑍
𝜕𝜕𝑦𝑦3 =

�𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2�

𝑦𝑦+∆𝑦𝑦
2

− �𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2�

𝑦𝑦−∆𝑦𝑦
2

∆𝑦𝑦
 

Expressions exist for the above third order derivatives. The following derivative was 

derived as shown below. 

𝜕𝜕3𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦

=

�𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2�

𝑦𝑦+∆𝑦𝑦
2

− �𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2�

𝑦𝑦−∆𝑦𝑦
2

∆𝑦𝑦
 

=
�𝑍𝑍

𝑖𝑖+1,𝑗𝑗 +1
2

− 2𝑍𝑍
𝑖𝑖 ,𝑗𝑗 +1

2
+ 𝑍𝑍

𝑖𝑖−1,𝑗𝑗 +1
2

� − �𝑍𝑍
𝑖𝑖+1,𝑗𝑗 −1

2
− 2𝑍𝑍

𝑖𝑖 ,𝑗𝑗 −1
2

+ 𝑍𝑍
𝑖𝑖−1,𝑗𝑗 −1

2
�

(∆𝑥𝑥)2(∆𝑦𝑦)  

The fourth order derivative is determined via the following equations: 

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥4 =

�𝜕𝜕3𝑍𝑍
𝜕𝜕𝑥𝑥3�

𝑥𝑥+∆𝑥𝑥
2

− �𝜕𝜕3𝑍𝑍
𝜕𝜕𝑥𝑥3�

𝑥𝑥−∆𝑥𝑥
2

∆𝑥𝑥
 

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑦𝑦4 =

�𝜕𝜕3𝑍𝑍
𝜕𝜕𝑦𝑦3�

𝑦𝑦+∆𝑦𝑦
2

− �𝜕𝜕3𝑍𝑍
𝜕𝜕𝑦𝑦3�

𝑦𝑦−∆𝑦𝑦
2

∆𝑦𝑦
 

Expressions already exist for the first two derivatives. However, the following derivative 

was derived as shown below. 
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Appendix B Continued 

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 =

� 𝜕𝜕3𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦�

𝑦𝑦+∆𝑦𝑦
2

− � 𝜕𝜕3𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦�

𝑦𝑦−∆𝑦𝑦
2

∆𝑦𝑦
 

=
�𝑍𝑍𝑖𝑖+1,𝑗𝑗 +1 − 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 +1 + 𝑍𝑍𝑖𝑖−1,𝑗𝑗 +1 − 𝑍𝑍𝑖𝑖+1,𝑗𝑗 + 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 − 𝑍𝑍𝑖𝑖−1,𝑗𝑗 �

(∆𝑥𝑥)2(∆𝑦𝑦)2

−
�𝑍𝑍𝑖𝑖+1,𝑗𝑗 − 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 + 𝑍𝑍𝑖𝑖−1,𝑗𝑗 − 𝑍𝑍𝑖𝑖+1,𝑗𝑗 −1 + 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 −1 − 𝑍𝑍𝑖𝑖−1,𝑗𝑗 −1�

(∆𝑥𝑥)2(∆𝑦𝑦)2  

=
𝑍𝑍𝑖𝑖+1,𝑗𝑗 +1 − 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 +1 + 𝑍𝑍𝑖𝑖−1,𝑗𝑗 +1 − 2𝑍𝑍𝑖𝑖+1,𝑗𝑗 + 4𝑍𝑍𝑖𝑖 ,𝑗𝑗 − 2𝑍𝑍𝑖𝑖−1,𝑗𝑗 + 𝑍𝑍𝑖𝑖+1,𝑗𝑗 −1 − 2𝑍𝑍𝑖𝑖 ,𝑗𝑗 −1 + 𝑍𝑍𝑖𝑖−1,𝑗𝑗 −1

(∆𝑥𝑥)2(∆𝑦𝑦)2  
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Appendix C: Derivation of Biharmonic Equation in Terms of Displacement 

 

The shearing forces are defined as: 

𝑄𝑄𝑥𝑥 =
𝜕𝜕𝑀𝑀𝑥𝑥

𝜕𝜕𝑥𝑥
−

𝜕𝜕𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑦𝑦
 

𝑄𝑄𝑦𝑦 =
𝜕𝜕𝑀𝑀𝑦𝑦

𝜕𝜕𝑦𝑦
−

𝜕𝜕𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥
 

The projection of the forces in the z direction are: 

𝑁𝑁𝑥𝑥
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 +

𝜕𝜕𝑁𝑁𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑍𝑍
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

𝑁𝑁𝑦𝑦
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 +

𝜕𝜕𝑁𝑁𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑍𝑍
𝜕𝜕𝑦𝑦

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

2𝑁𝑁𝑥𝑥𝑦𝑦
𝜕𝜕2𝑍𝑍

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 +

𝜕𝜕𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥
𝜕𝜕𝑍𝑍
𝜕𝜕𝑦𝑦

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 +
𝜕𝜕𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑍𝑍
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

The overall equilibrium expression including the addition of all the projected forces and a 

load (q) is: 

𝜕𝜕𝑄𝑄𝑥𝑥

𝜕𝜕𝑥𝑥
𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 +

𝜕𝜕𝑄𝑄𝑦𝑦

𝜕𝜕𝑦𝑦
𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 + 𝑞𝑞𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 + 𝑁𝑁𝑥𝑥

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 +

𝜕𝜕𝑁𝑁𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑍𝑍
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 + 𝑁𝑁𝑦𝑦
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

+
𝜕𝜕𝑁𝑁𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑍𝑍
𝜕𝜕𝑦𝑦

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 + 2𝑁𝑁𝑥𝑥𝑦𝑦
𝜕𝜕2𝑍𝑍

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 +

𝜕𝜕𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥
𝜕𝜕𝑍𝑍
𝜕𝜕𝑦𝑦

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 +
𝜕𝜕𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑍𝑍
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 = 0 

Or, 

𝜕𝜕𝑄𝑄𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝑄𝑄𝑦𝑦

𝜕𝜕𝑦𝑦
+ 𝑞𝑞 + 𝑁𝑁𝑥𝑥

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 +

𝜕𝜕𝑁𝑁𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑍𝑍
𝜕𝜕𝑥𝑥

+ 𝑁𝑁𝑦𝑦
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 +

𝜕𝜕𝑁𝑁𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑍𝑍
𝜕𝜕𝑦𝑦

+ 2𝑁𝑁𝑥𝑥𝑦𝑦
𝜕𝜕2𝑍𝑍

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
+

𝜕𝜕𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥
𝜕𝜕𝑍𝑍
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑍𝑍
𝜕𝜕𝑥𝑥

= 0 

Since Nx, Ny, and Nxy are constants, the expression becomes: 

𝜕𝜕𝑄𝑄𝑥𝑥

𝜕𝜕𝑥𝑥
+

𝜕𝜕𝑄𝑄𝑦𝑦

𝜕𝜕𝑦𝑦
= − �𝑞𝑞 + 𝑁𝑁𝑥𝑥

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝑁𝑁𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + 2𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

� 

Using the expression for the shearing forces, 

�
𝜕𝜕2𝑀𝑀𝑥𝑥

𝜕𝜕𝑥𝑥2 −
𝜕𝜕2𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
� + �

𝜕𝜕2𝑀𝑀𝑦𝑦

𝜕𝜕𝑦𝑦2 −
𝜕𝜕2𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
� = − �𝑞𝑞 + 𝑁𝑁𝑥𝑥

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝑁𝑁𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + 2𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

� 
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𝜕𝜕2𝑀𝑀𝑥𝑥

𝜕𝜕𝑥𝑥2 − 2
𝜕𝜕2𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
+

𝜕𝜕2𝑀𝑀𝑦𝑦

𝜕𝜕𝑦𝑦2 = − �𝑞𝑞 + 𝑁𝑁𝑥𝑥
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝑁𝑁𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + 2𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

� 

The moments are defined as: 

𝑀𝑀𝑥𝑥 = −𝐷𝐷 �
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝜈𝜈

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2� 

𝑀𝑀𝑦𝑦 = −𝐷𝐷 �
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + 𝜈𝜈

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2� 

𝑀𝑀𝑥𝑥𝑦𝑦 = 𝐷𝐷(1 − 𝜈𝜈)
𝜕𝜕2𝑍𝑍

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
 

Substituting the moments into the expression: 

−𝐷𝐷 �
𝜕𝜕2

𝜕𝜕𝑥𝑥2 �
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝜈𝜈

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2� + 2(1 − 𝜈𝜈)

𝜕𝜕2

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
�

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

� +
𝜕𝜕2

𝜕𝜕𝑦𝑦2 �
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + 𝜈𝜈

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2��

= − �𝑞𝑞 + 𝑁𝑁𝑥𝑥
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝑁𝑁𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + 2𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

� 

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥4 + 𝜈𝜈

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 + 2

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 − 2𝜈𝜈

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 +

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑦𝑦4 + 𝜈𝜈

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2

=
1
𝐷𝐷

�𝑞𝑞 + 𝑁𝑁𝑥𝑥
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝑁𝑁𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + 2𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

� 

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥4 + 2

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2 +

𝜕𝜕4𝑍𝑍
𝜕𝜕𝑦𝑦4 =

1
𝐷𝐷

�𝑞𝑞 + 𝑁𝑁𝑥𝑥
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝑁𝑁𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + 2𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

� 

In the absence of a load and compression in directions other than the x direction, the 

expression simplifies to: 

∇4𝑍𝑍 =
1
𝐷𝐷

�𝑁𝑁𝑥𝑥
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2� 

If the force acting is a compression, the sign of Nx will be negative. Otherwise there is no 

need for a sign change. 
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If the proposed solution is as follows, 

𝑍𝑍 = sin(𝛼𝛼𝑚𝑚 𝑥𝑥) [𝐶𝐶1𝑒𝑒−𝛼𝛼𝑦𝑦 + 𝐶𝐶2𝑒𝑒𝛼𝛼𝑦𝑦 + 𝐶𝐶3𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑦𝑦 + 𝐶𝐶4𝑐𝑐𝑖𝑖𝑐𝑐𝛽𝛽𝑦𝑦] 

𝛼𝛼𝑚𝑚 =
𝑚𝑚𝑚𝑚
𝑊𝑊

  ;  𝛼𝛼 = �𝛼𝛼𝑚𝑚
2 + �𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2  ;   𝛽𝛽 = �−𝛼𝛼𝑚𝑚
2 + �𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2 

The biharmonic equation with a compression force in the x direction is: 

∇4Z =
∂4Z
∂x4 +

∂4Z
∂y4 + 2

∂4Z
∂x2 ∂y2 = −

Nx

D
∂2Z
∂x2  

Solving for the LHS and dividing by sin(αmx): 

𝛼𝛼𝑚𝑚
4[𝐶𝐶1𝑒𝑒−𝛼𝛼𝑦𝑦 + 𝐶𝐶2𝑒𝑒𝛼𝛼𝑦𝑦 + 𝐶𝐶3𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑦𝑦 + 𝐶𝐶4𝑐𝑐𝑖𝑖𝑐𝑐𝛽𝛽𝑦𝑦] 

−2𝛼𝛼𝑚𝑚
2[𝛼𝛼2𝐶𝐶1𝑒𝑒−𝛼𝛼𝑦𝑦 + 𝛼𝛼2𝐶𝐶2𝑒𝑒𝛼𝛼𝑦𝑦 − 𝛽𝛽2𝐶𝐶3𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑦𝑦 − 𝛽𝛽2𝐶𝐶4𝑐𝑐𝑖𝑖𝑐𝑐𝛽𝛽𝑦𝑦] 

+[𝛼𝛼4𝐶𝐶1𝑒𝑒−𝛼𝛼𝑦𝑦 + 𝛼𝛼4𝐶𝐶2𝑒𝑒𝛼𝛼𝑦𝑦 + 𝛽𝛽4𝐶𝐶3𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑦𝑦 + 𝛽𝛽4𝐶𝐶4𝑐𝑐𝑖𝑖𝑐𝑐𝛽𝛽𝑦𝑦] 

Which further simplifies to: 

(𝛼𝛼𝑚𝑚
4 − 2𝛼𝛼𝑚𝑚

2𝛼𝛼2 + 𝛼𝛼4)𝐶𝐶1𝑒𝑒−𝛼𝛼𝑦𝑦 + (𝛼𝛼𝑚𝑚
4 − 2𝛼𝛼𝑚𝑚

2𝛼𝛼2 + 𝛼𝛼4)𝐶𝐶2𝑒𝑒𝛼𝛼𝑦𝑦  

+(𝛼𝛼𝑚𝑚
4 + 2𝛼𝛼𝑚𝑚

2𝛽𝛽2 + 𝛽𝛽4)𝐶𝐶3𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑦𝑦 + (𝛼𝛼𝑚𝑚
4 + 2𝛼𝛼𝑚𝑚

2𝛽𝛽2 + 𝛽𝛽4)𝐶𝐶4𝑐𝑐𝑖𝑖𝑐𝑐𝛽𝛽𝑦𝑦 

Evaluating the coefficients: 

(𝛼𝛼𝑚𝑚
4 − 2𝛼𝛼𝑚𝑚

2𝛼𝛼2 + 𝛼𝛼4) = 𝛼𝛼𝑚𝑚
4 − 2𝛼𝛼𝑚𝑚

2 �𝛼𝛼𝑚𝑚
2 + �𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2� + �𝛼𝛼𝑚𝑚
2 + �𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2�

2

= 𝛼𝛼𝑚𝑚
4 − 2𝛼𝛼𝑚𝑚

4 − 2𝛼𝛼𝑚𝑚
2�𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2 + 𝛼𝛼𝑚𝑚
4 + 2𝛼𝛼𝑚𝑚

2�𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2 +
𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2

=
𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2 
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(𝛼𝛼𝑚𝑚
4 + 2𝛼𝛼𝑚𝑚

2𝛽𝛽2 + 𝛽𝛽4) = 𝛼𝛼𝑚𝑚
4 + 2𝛼𝛼𝑚𝑚

2 �−𝛼𝛼𝑚𝑚
2 + �𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2� + �−𝛼𝛼𝑚𝑚
2 + �𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2�

2

= 𝛼𝛼𝑚𝑚
4 − 2𝛼𝛼𝑚𝑚

4 + 2𝛼𝛼𝑚𝑚
2�𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2 + 𝛼𝛼𝑚𝑚
4 − 2𝛼𝛼𝑚𝑚

2�𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2 +
𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2

=
𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2 

Hence the LHS is: 

𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2[𝐶𝐶1𝑒𝑒−𝛼𝛼𝑦𝑦 + 𝐶𝐶2𝑒𝑒𝛼𝛼𝑦𝑦 + 𝐶𝐶3𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑦𝑦 + 𝐶𝐶4𝑐𝑐𝑖𝑖𝑐𝑐𝛽𝛽𝑦𝑦] 

The RHS is 

−
𝑁𝑁𝑥𝑥

𝐷𝐷
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 = −

𝑁𝑁𝑥𝑥

𝐷𝐷
[−𝛼𝛼𝑚𝑚

2sin(𝛼𝛼𝑚𝑚 𝑥𝑥)][𝐶𝐶1𝑒𝑒−𝛼𝛼𝑦𝑦 + 𝐶𝐶2𝑒𝑒𝛼𝛼𝑦𝑦 + 𝐶𝐶3𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑦𝑦 + 𝐶𝐶4𝑐𝑐𝑖𝑖𝑐𝑐𝛽𝛽𝑦𝑦] 

Dividing by sin(αmx) just as with the LHS, RHS then becomes: 

𝑁𝑁𝑥𝑥

𝐷𝐷
𝛼𝛼𝑚𝑚

2[𝐶𝐶1𝑒𝑒−𝛼𝛼𝑦𝑦 + 𝐶𝐶2𝑒𝑒𝛼𝛼𝑦𝑦 + 𝐶𝐶3𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑦𝑦 + 𝐶𝐶4𝑐𝑐𝑖𝑖𝑐𝑐𝛽𝛽𝑦𝑦] 

Since the left and right hand sides are equal, the proposed solution satisfies the 

biharmonic equation. 
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Appendix E: Derivation of the Strain Energy Equation 

 

The expression for the strain energy is obtained by analyzing the contributions due to 

both bending and twisting. The expression for the strain energy due to bending is: 

𝑑𝑑𝑈𝑈𝐵𝐵 = −
1
2

�𝑀𝑀𝑥𝑥
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝑀𝑀𝑦𝑦

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

The bending moments with respect to x and y are defined as: 

𝑀𝑀𝑥𝑥 = −𝐷𝐷 �
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝜈𝜈

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2� 

𝑀𝑀𝑦𝑦 = −𝐷𝐷 �
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + 𝜈𝜈

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2� 

Substituting the moments into the strain energy equation due to bending, 

𝑑𝑑𝑈𝑈𝐵𝐵 = −
1
2

�−𝐷𝐷 �
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 + 𝜈𝜈

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2�

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 − 𝐷𝐷 �

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + 𝜈𝜈

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2�

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

𝑑𝑑𝑈𝑈𝐵𝐵 =
𝐷𝐷
2

��
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2�

2

+ 𝜈𝜈
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + �

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2�

2

+ 𝜈𝜈
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

𝑑𝑑𝑈𝑈𝐵𝐵 =
𝐷𝐷
2

��
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2�

2

+ 2𝜈𝜈
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + �

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2�

2

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

The strain energy due to twisting is defined as: 

𝑑𝑑𝑈𝑈𝑇𝑇 = 𝑀𝑀𝑥𝑥𝑦𝑦
𝜕𝜕2𝑍𝑍

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

The twisting moment is defined as: 

𝑀𝑀𝑥𝑥𝑦𝑦 = 𝐷𝐷(1 − 𝜈𝜈)
𝜕𝜕2𝑍𝑍

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
 

Substituting the twisting moment into the strain energy due to twisting equation, 

𝑑𝑑𝑈𝑈𝑇𝑇 = 𝐷𝐷(1 − 𝜈𝜈) �
𝜕𝜕2𝑍𝑍

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
�

2

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

Combining the strain energies due to bending and twisting, 
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𝑑𝑑𝑈𝑈 = 𝑑𝑑𝑈𝑈𝐵𝐵 + 𝑑𝑑𝑈𝑈𝑇𝑇 

𝑑𝑑𝑈𝑈 =
𝐷𝐷
2

��
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2�

2

+ 2𝜈𝜈
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + �

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2�

2

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 + 𝐷𝐷(1 − 𝜈𝜈) �
𝜕𝜕2𝑍𝑍

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
�

2

𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

𝑑𝑑𝑈𝑈 =
𝐷𝐷
2

��
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2�

2

+ 2𝜈𝜈
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + �

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2�

2

+ 2(1 − 𝜈𝜈) �
𝜕𝜕2𝑍𝑍

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
�

2

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

The overall strain energy is obtained by integrating the overall strain energy expression. 

𝑈𝑈 =
𝐷𝐷
2

� � ��
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2�

2

+ 2𝜈𝜈
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 + �

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2�

2

+ 2(1 − 𝜈𝜈) �
𝜕𝜕2𝑍𝑍

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
�

2

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

According to Timoshenko, the overall expression can be expressed as [reference]: 

𝑈𝑈 =
𝐷𝐷
2

� � ��
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2�

2

− 2(1 − 𝜈𝜈) �
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑦𝑦2 − �

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

�
2

�� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

This expression is not algebraically equivalent to the other expression yet it still yields 

solutions that are in agreement with the determinant method. 
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Appendix F: Determinant of a 4x4 Matrix 

 

If a 4x4 matrix is defined as: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
  

 

The determinant will be 

22 23 24 21 23 24 21 22 24

11 32 33 34 12 31 33 34 13 31 32 34

42 43 44 41 43 44 41 42 44

21 22 23

14 31 32 33

41 42 43

det det det

det

a a a a a a a a a
a a a a a a a a a a a a

a a a a a a a a a

a a a
a a a a

a a a

     
     − +     
          
 
 −  
  

 

The determinants of the 3x3 matrices are as follows: 

 

( ) ( ) ( )
22 23 24

32 33 34 22 33 44 34 43 23 32 44 34 42 24 32 43 33 42

42 43 44

det
a a a
a a a a a a a a a a a a a a a a a a
a a a

 
  = − − − + − 
  

 

 

( ) ( ) ( )
21 23 24

31 33 34 21 33 44 34 43 23 31 44 34 41 24 31 43 33 41

41 43 44

det
a a a
a a a a a a a a a a a a a a a a a a
a a a

 
  = − − − + − 
  

 

 

( ) ( ) ( )
21 22 24

31 32 34 21 32 44 34 42 22 31 44 34 41 24 31 42 32 41

41 42 44

det
a a a
a a a a a a a a a a a a a a a a a a
a a a

 
  = − − − + − 
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( ) ( ) ( )
21 22 23

31 32 33 21 32 43 33 42 22 31 43 33 41 23 31 42 32 41

41 42 43

det
a a a
a a a a a a a a a a a a a a a a a a
a a a

 
  = − − − + − 
  

 

 

Hence the overall expression for the determinant is: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

11 22 33 44 34 43 23 32 44 34 42 24 32 43 33 42

12 21 33 44 34 43 23 31 44 34 41 24 31 43 33 41

13 21 32 44 34 42 22 31 44 34 41 24 31 42 32 41

14 21 32 43 33 42 22 31

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a

 − − − + − 
 − − − − + − 
 + − − − + − 

− − − ( ) ( )43 33 41 23 31 42 32 41a a a a a a a a − + −   
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Appendix G: MATLAB Code 

 

Finite Difference Approximation of Biharmonic Equation 

function Buckling_2D 
%       CENTRAL FINITE DIFFERENCE APPROXIMATION 
%             OF THE BIHARMONIC EQUATION 
% 
%               by: Abiola Shitta 
%              (Grid defined below) 
% 
%                    Z(i,j+2) 
%         Z(i-1,j+1) Z(i,j+1) Z(i+1,j+1) 
%Z(i-2,j) Z(i-1,j)   Z(i,j)   Z(i+1,j)   Z(i+2,j) 
%         Z(i-1,j-1) Z(i,j-1) Z(i+1,j-1) 
%                    Z(i,j-2) 
%Used to solve: 
% 
%          
%        d4Z     d4Z      d4Z     Nx    d2Z 
%       ----- + ----- + 2----- + ---- ------ = 0 
%        dx4     dy4     dx2dy2   D     dx2 
clc; 
clear; 
close all; 
%Width of Gel (x direction)% 
W=30; 
%Length of Gel (y direction)% 
L=5; 
%Thickness of Gel (z direction)% 
H=0.5; 
  
%No of Grid Points along Width% 
NW=20; 
%No of Grid Points along Length% 
NL=5; 
  
%Step Size along Width% 
dw=W/(NW-1); 
%Step Size along Length% 
dl=L/(NL-1); 
  
Nx=100; 
   
 
 
%Poisson Ratio 
pr=0.25; 
%Modulus of Elasticity 
E=10*(12*(1-pr^2))/(H^3); 
%Flexural Rigidity 
D=E*H^3/(12*(1-pr^2)); 
N=NL*NW; 
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Z=zeros(N); 
%Coefficients% 
a=dw^4; 
b=2*dw^2*dl^2; 
c=-4*dw^4-4*dw^2*dl^2; 
d=dl^4; 
e=-4*dl^4-4*dw^2*dl^2+(Nx/D)*dw^2*dl^4; 
f=6*dl^4+6*dw^4+8*dw^2*dl^4-2*(Nx/D)*dw^2*dl^4; 
%Initial Coefficient Matrix 
for i=1:N 
    if i+2*NW<=N 
        Z(i,i+2*(NW))=a;              %Z(i,j+2) 
    end 
    if i+1+NW<=N 
        Z(i,i+1+(NW))=b;              %Z(i+1,j+1) 
    end 
    if i+NW<=N 
        Z(i,i+1*(NW))=c;              %Z(i,j+1) 
    end 
    if i+1-NW>0 
        Z(i,i+1-(NW))=b;              %Z(i+1,j-1) 
    end  
    if i-2>0 
        Z(i,i-2)=d;                   %Z(i-2,j) 
    end 
    if i-1>0 
        Z(i,i-1)=e;                   %Z(i-1,j) 
    end 
    Z(i,i)=f;                         %Z(i,j) 
    if i+1<=N 
        Z(i,i+1)=e;                   %Z(i+1,j) 
    end 
    if i+2<=N 
        Z(i,i+2)=d;                   %Z(i+2,j) 
    end   
    if i-1+(NW)<=N 
        Z(i,i-1+(NW))=b;              %Z(i-1,j+1) 
    end 
    if i-1*NW>0 
        Z(i,i-1*(NW))=c;              %Z(i,j-1) 
    end 
    if i-1-NW>0 
        Z(i,i-1-(NW))=b;              %Z(i-1,j-1) 
    end 
    if i-2*NW>0 
        Z(i,i-2*(NW))=a;               %Z(i,j-2) 
    end    
end 
%Initial Solution Matrix% 
C=zeros(N,1); 
  
%BOUNDARY CONDITIONS% 
%Lower y boundary (dZ/dy-Z=0) (FFD) 
for i=2:NW-1 
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    Z(i,:)=0; 
    if i+NW<=N 
        Z(i,i+1*(NW))=1;              %Z(i,j+1) 
    end 
    Z(i,i)=-1-dl;                         %Z(i,j) 
end 
%Lower x boundary (FFD) 
for i=1:NL 
    Z(NW*(i-1)+1,:)=0; 
    if NW*(i-1)+1+2<=N 
        Z(NW*(i-1)+1,NW*(i-1)+1+2)=dl^2;                   %Z(i+2,j) 
    end   
    if NW*(i-1)+1+NW<=N 
        Z(NW*(i-1)+1,NW*(i-1)+1+1*(NW))=pr*dw^2;              %Z(i,j+1) 
    end 
    Z(NW*(i-1)+1,NW*(i-1)+1)=dl^2-2*pr*dw^2-dw^2*dl^2;       %Z(i,j) 
    if NW*(i-1)+1+1<=N 
        Z(NW*(i-1)+1,NW*(i-1)+1+1)=-2*dl^2;                   %Z(i+1,j) 
    end  
    if NW*(i-1)+1-1*NW>0 
        Z(NW*(i-1)+1,NW*(i-1)+1-1*(NW))=pr*dw^2;              %Z(i,j-1) 
    end 
end 
%Upper x boundary (BFD) 
for i=1:NL 
    Z(NW*i,:)=0; 
    if NW*i+NW<=N 
        Z(NW*i,NW*i+1*(NW))=pr*dw^2;              %Z(i,j+1) 
    end 
    if NW*i-1>0 
        Z(NW*i,NW*i-1)=-2*dl^2;                   %Z(i-1,j) 
    end 
    if NW*i-2>0 
        Z(NW*i,NW*i-2)=dl^2;                   %Z(i-2,j) 
    end 
    Z(NW*i,NW*i)=dl^2-2*pr*dw^2-dw^2*dl^2;            %Z(i,j) 
    if NW*i-1*NW>0 
        Z(NW*i,NW*i-1*(NW))=pr*dw^2;              %Z(i,j-1) 
    end 
end 
%Upper y boundary (CFD)  
for i=(NL-1)*NW+2:N-1                 
    Z(i,:)=0;                         
    if i+2*NW<=N 
        Z(i,i+2*(NW))=dw^2;              %Z(i,j+2) 
    end 
    if i+NW<=N 
        Z(i,i+1*(NW))=2*dw^2-2*(2-pr)*dl^2-2*dw^2*dl;  %Z(i,j+1) 
    end 
    if i-1-NW>0 
        Z(i,i-1-(NW))=-(2-pr)*dl^2;              %Z(i-1,j-1) 
    end 
    if i-1+(NW)<=N 
        Z(i,i-1+(NW))=(2-pr)*dl^2;              %Z(i-1,j+1) 
    end 



www.manaraa.com

65 

Appendix G Continued 

    if i-1>0 
        Z(i,i-1)=-2*pr*dl^3;                   %Z(i-1,j) 
    end 
    Z(i,i)=-4*dw^2*dl-4*pr*dl^3;                         %Z(i,j) 
    if i+1<=N 
        Z(i,i+1)=-2*pr*dl^3;                   %Z(i+1,j) 
    end  
    if i+1+NW<=N 
        Z(i,i+1+(NW))=(2-pr)*dl^2;              %Z(i+1,j+1) 
    end 
    if i+1-NW>0 
        Z(i,i+1-(NW))=-(2-pr)*dl^2;              %Z(i+1,j-1) 
    end 
    if i-1*NW>0 
        Z(i,i-1*(NW))=2*dw^2+2*(2-pr)*dl^2-2*dw^2*dl;       %Z(i,j-1) 
    end 
    if i-2*NW>0 
        Z(i,i-2*(NW))=dw^2;              %Z(i,j-2) 
    end 
    C(i)=Z(i,:)*[zeros((NL-1)*NW+1,1);2*sin(3*pi*(i-((NL-1)*NW+1))/(NW-
1))*ones(NW-2,1);0]; 
end 
  
%Spy on Z% 
spy(Z) 
%CALCULATION & REARRANGEMENT% 
z=Z\C; 
for j=1:NL 
    for i=1:NW 
        Zsol(j,i)=z((j-1)*NW+i,1); 
    end 
end 
  
%PLOT OF SOLUTION% 
figure; 
x=0:dw:W; 
y=0:dl:L; 
[X,Y]=meshgrid(x,y); 
hold on 
%Upper Z Surface 
surf(X,Y,Zsol+H/2) 
%Lower Z Surface 
surf(X,Y,Zsol-H/2) 
%Upper Y Surface 
[X1,Y1]=meshgrid(x,L); 
for i=1:NW 
    Zsol1(i,:)=Zsol(NL,:)+H/2-(H)*i/NW; 
end 
surf(X1,Y1,Zsol1) 
%Lower Y Surface 
[X2,Y2]=meshgrid(x,0); 
for i=1:NW 
    Zsol2(i,:)=Zsol(1,:)+H/2-(H)*i/NW; 
end 
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surf(X2,Y2,Zsol2) 
%Upper X Surface 
[X3,Y3]=meshgrid(W,y); 
for i=1:NL 
    Zsol3(:,i)=Zsol(:,NW)+H/2-(H)*i/(NL); 
end 
surf(X3,Y3,Zsol3) 
%Lower X Surface 
[X4,Y4]=meshgrid(0,y); 
for i=1:NL 
    Zsol4(:,i)=Zsol(:,1)+H/2-(H)*i/(NL); 
end 
surf(X4,Y4,Zsol4) 
  
colormap cool 
colorbar 
shading interp 
axis equal 
axis off 
zoom(1.4) 
lightangle(30,30) 
camorbit(-155,-72) 
set(gcf,'Renderer','zbuffer') 
set(findobj(gca,'type','surface'),... 
    'FaceLighting','phong',... 
    'AmbientStrength',0.3,'DiffuseStrength',.8,... 
    'SpecularStrength',.9,'SpecularExponent',40,... 
    'BackFaceLighting','unlit') 
 

Determinant Behavior w.r.t. Nx 

 

This m-file was used to determine how changing certain function values would give rise 

to a difference in the functions determinant. It was also used as a means to determine 

an appropriate initial guess for the critical magnitude of compression. 

function AnalyticalBuckling 
clc 
clear all 
close all 
m1=1;  %Wavenumber 
W=30; %Width of Gel 
L=5;  %Length of Gel 
Nx0=0; 
for i=1:85 
    Nx(i,1)=Nx0+10*(i-1); 
D=10; %Flexural Rigidity 
alpham=m1*pi/W; 
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nu=0.25; %Poisson Ratio 
alpha=sqrt(m1^2*pi^2/(W^2)+sqrt(Nx(i,1)/D*m1^2*pi^2/(W^2))); 
beta=sqrt(-m1^2*pi^2/(W^2)+sqrt(Nx(i,1)/D*m1^2*pi^2/(W^2))); 
  
A=[1 1 1 0; -alpha alpha 0 beta;...  
    (alpha^2*exp(-alpha*L)-alpham^2*nu*exp(-alpha*L)) ... 
    (alpha^2*exp(alpha*L)-alpham^2*nu*exp(alpha*L)) ... 
    (-beta^2*cos(beta*L)-alpham^2*nu*cos(beta*L)) ... 
    (-beta^2*sin(beta*L)-alpham^2*nu*sin(beta*L));... 
    (-alpha^3*exp(-alpha*L)+alpham^2*(2-nu)*alpha*exp(-alpha*L)) ... 
    (alpha^3*exp(alpha*L)-alpham^2*(2-nu)*alpha*exp(alpha*L)) ... 
    (beta^3*sin(beta*L)+alpham^2*(2-nu)*beta*sin(beta*L)) ... 
    (-beta^3*cos(beta*L)-alpham^2*(2-nu)*beta*cos(beta*L))]; 
  
y(i,1)=det(A); 
end 
m2=2; 
for i=1:46 
    Nx1(i,1)=Nx0+5*(i-1); 
alpham=m2*pi/W; 
alpha=sqrt(m2^2*pi^2/(W^2)+sqrt(Nx1(i,1)/D*m2^2*pi^2/(W^2))); 
beta=sqrt(-m2^2*pi^2/(W^2)+sqrt(Nx1(i,1)/D*m2^2*pi^2/(W^2))); 
  
A=[1 1 1 0; -alpha alpha 0 beta;...  
    (alpha^2*exp(-alpha*L)-alpham^2*nu*exp(-alpha*L)) ... 
    (alpha^2*exp(alpha*L)-alpham^2*nu*exp(alpha*L)) ... 
    (-beta^2*cos(beta*L)-alpham^2*nu*cos(beta*L)) ... 
    (-beta^2*sin(beta*L)-alpham^2*nu*sin(beta*L));... 
    (-alpha^3*exp(-alpha*L)+alpham^2*(2-nu)*alpha*exp(-alpha*L)) ... 
    (alpha^3*exp(alpha*L)-alpham^2*(2-nu)*alpha*exp(alpha*L)) ... 
    (beta^3*sin(beta*L)+alpham^2*(2-nu)*beta*sin(beta*L)) ... 
    (-beta^3*cos(beta*L)-alpham^2*(2-nu)*beta*cos(beta*L))]; 
  
y1(i,1)=det(A); 
end 
m3=3; 
for i=1:46 
    Nx2(i,1)=Nx0+2.5*(i-1); 
alpham=m3*pi/W; 
alpha=sqrt(m3^2*pi^2/(W^2)+sqrt(Nx2(i,1)/D*m3^2*pi^2/(W^2))); 
beta=sqrt(-m3^2*pi^2/(W^2)+sqrt(Nx2(i,1)/D*m3^2*pi^2/(W^2))); 
  
A=[1 1 1 0; -alpha alpha 0 beta;...  
    (alpha^2*exp(-alpha*L)-alpham^2*nu*exp(-alpha*L)) ... 
    (alpha^2*exp(alpha*L)-alpham^2*nu*exp(alpha*L)) ... 
    (-beta^2*cos(beta*L)-alpham^2*nu*cos(beta*L)) ... 
    (-beta^2*sin(beta*L)-alpham^2*nu*sin(beta*L));... 
    (-alpha^3*exp(-alpha*L)+alpham^2*(2-nu)*alpha*exp(-alpha*L)) ... 
    (alpha^3*exp(alpha*L)-alpham^2*(2-nu)*alpha*exp(alpha*L)) ... 
    (beta^3*sin(beta*L)+alpham^2*(2-nu)*beta*sin(beta*L)) ... 
    (-beta^3*cos(beta*L)-alpham^2*(2-nu)*beta*cos(beta*L))]; 
y2(i,1)=det(A); 
end 
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%Determinant Plot 
plot(Nx,y,'*-',Nx1,y1,'d-',Nx2,y2,'p-') 
xlabel('N_x','Fontsize',14) 
ylabel('Determinant','Fontsize',14) 
title('Plot of Determinant against N_x','Fontsize',16) 
legend('m = 1','m = 2','m = 3') 
 

Determinant Behavior w.r.t. D 

 

This m-file changes the value of the flexural rigidity and calculates the value of the 

determinant. This was used for initial guess purposes as well as a means to assess how 

changing the wavenumber changes the determinant behavior. 

function AnalyticalBuckling3 
  
%Change D and find the Determinant 
clc 
clear all 
close all 
m1=1;  %Wavenumber 
W=30; %Width of Gel 
L=10;  %Length of Gel 
Nx=50; 
D0=5; %Flexural Rigidity 
for i=1:79 
    D1(i,1)=D0+2.5*(i-1); 
  
alpham=m1*pi/W; 
nu=0.25; %Poisson Ratio 
alpha=sqrt(m1^2*pi^2/(W^2)+sqrt(Nx/D1(i,1)*m1^2*pi^2/(W^2))); 
beta=sqrt(-m1^2*pi^2/(W^2)+sqrt(Nx/D1(i,1)*m1^2*pi^2/(W^2))); 
  
A=[1 1 1 0; -alpha alpha 0 beta;...  
    (alpha^2*exp(-alpha*L)-alpham^2*nu*exp(-alpha*L)) ... 
    (alpha^2*exp(alpha*L)-alpham^2*nu*exp(alpha*L)) ... 
    (-beta^2*cos(beta*L)-alpham^2*nu*cos(beta*L)) ... 
    (-beta^2*sin(beta*L)-alpham^2*nu*sin(beta*L));... 
    (-alpha^3*exp(-alpha*L)+alpham^2*(2-nu)*alpha*exp(-alpha*L)) ... 
    (alpha^3*exp(alpha*L)-alpham^2*(2-nu)*alpha*exp(alpha*L)) ... 
    (beta^3*sin(beta*L)+alpham^2*(2-nu)*beta*sin(beta*L)) ... 
    (-beta^3*cos(beta*L)-alpham^2*(2-nu)*beta*cos(beta*L))];  
y1(i,1)=det(A); 
end 
  
D02=20; 
m2=2; 
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for i=1:73 
    D2(i,1)=D02+2.5*(i-1); 
  
alpham=m2*pi/W; 
nu=0.25; %Poisson Ratio 
alpha=sqrt(m2^2*pi^2/(W^2)+sqrt(Nx/D2(i,1)*m2^2*pi^2/(W^2))); 
beta=sqrt(-m2^2*pi^2/(W^2)+sqrt(Nx/D2(i,1)*m2^2*pi^2/(W^2))); 
  
A=[1 1 1 0; -alpha alpha 0 beta;...  
    (alpha^2*exp(-alpha*L)-alpham^2*nu*exp(-alpha*L)) ... 
    (alpha^2*exp(alpha*L)-alpham^2*nu*exp(alpha*L)) ... 
    (-beta^2*cos(beta*L)-alpham^2*nu*cos(beta*L)) ... 
    (-beta^2*sin(beta*L)-alpham^2*nu*sin(beta*L));... 
    (-alpha^3*exp(-alpha*L)+alpham^2*(2-nu)*alpha*exp(-alpha*L)) ... 
    (alpha^3*exp(alpha*L)-alpham^2*(2-nu)*alpha*exp(alpha*L)) ... 
    (beta^3*sin(beta*L)+alpham^2*(2-nu)*beta*sin(beta*L)) ... 
    (-beta^3*cos(beta*L)-alpham^2*(2-nu)*beta*cos(beta*L))]; 
  
y2(i,1)=det(A); 
end 
  
D03=40; 
m3=3; 
for i=1:65 
    D3(i,1)=D03+2.5*(i-1); 
  
alpham=m3*pi/W; 
nu=0.25; %Poisson Ratio 
alpha=sqrt(m3^2*pi^2/(W^2)+sqrt(Nx/D3(i,1)*m3^2*pi^2/(W^2))); 
beta=sqrt(-m3^2*pi^2/(W^2)+sqrt(Nx/D3(i,1)*m3^2*pi^2/(W^2))); 
  
A=[1 1 1 0; -alpha alpha 0 beta;...  
    (alpha^2*exp(-alpha*L)-alpham^2*nu*exp(-alpha*L)) ... 
    (alpha^2*exp(alpha*L)-alpham^2*nu*exp(alpha*L)) ... 
    (-beta^2*cos(beta*L)-alpham^2*nu*cos(beta*L)) ... 
    (-beta^2*sin(beta*L)-alpham^2*nu*sin(beta*L));... 
    (-alpha^3*exp(-alpha*L)+alpham^2*(2-nu)*alpha*exp(-alpha*L)) ... 
    (alpha^3*exp(alpha*L)-alpham^2*(2-nu)*alpha*exp(alpha*L)) ... 
    (beta^3*sin(beta*L)+alpham^2*(2-nu)*beta*sin(beta*L)) ... 
    (-beta^3*cos(beta*L)-alpham^2*(2-nu)*beta*cos(beta*L))]; 
  
y3(i,1)=det(A); 
end 
%Determinant Plot 
plot(D1,y1,'*-',D2,y2,'*-',D3,y3,'*-') 
xlabel('(D) Flexural Rigidity','Fontsize',14) 
ylabel('Determinant','Fontsize',14) 
title('Plot of Determinant against D','Fontsize',16) 
legend('m = 1','m = 2','m = 3') 
axis([0 200 -13 8]) 
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Determinant Behavior w.r.t. L/W 

 

This m-file analyzes how the length to width ratio affects the determinant. 

function AnalyticalBuckling6 
clc 
clear all 
close all 
m=1;  %Wavenumber 
W=30; %Width of Gel 
L0=3;   
Nx=20; 
nu=0.25; 
for i=1:38 
    L(i,1)=L0+.5*(i-1); 
D=10; %Flexural Rigidity 
alpham=m*pi/W; 
alpha=sqrt(m^2*pi^2/(W^2)+sqrt(Nx/D*m^2*pi^2/(W^2))); 
beta=sqrt(-m^2*pi^2/(W^2)+sqrt(Nx/D*m^2*pi^2/(W^2))); 
  
A=[1 1 1 0; -alpha alpha 0 beta;...  
    (alpha^2*exp(-alpha*L(i,1))-alpham^2*nu*exp(-alpha*L(i,1))) ... 
    (alpha^2*exp(alpha*L(i,1))-alpham^2*nu*exp(alpha*L(i,1))) ... 
    (-beta^2*cos(beta*L(i,1))-alpham^2*nu*cos(beta*L(i,1))) ... 
    (-beta^2*sin(beta*L(i,1))-alpham^2*nu*sin(beta*L(i,1)));... 
    (-alpha^3*exp(-alpha*L(i,1))+alpham^2*(2-nu)*alpha*exp(-
alpha*L(i,1))) ... 
    (alpha^3*exp(alpha*L(i,1))-alpham^2*(2-nu)*alpha*exp(alpha*L(i,1))) 
... 
    (beta^3*sin(beta*L(i,1))+alpham^2*(2-nu)*beta*sin(beta*L(i,1))) ... 
    (-beta^3*cos(beta*L(i,1))-alpham^2*(2-nu)*beta*cos(beta*L(i,1)))]; 
  
y(i,1)=det(A); 
end 
  
%Determinant Plot 
plot(L/W,y,'*-') 
xlabel('L/W','Fontsize',14) 
ylabel('Determinant','Fontsize',14) 
title('Plot of Determinant against L/W','Fontsize',16) 
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Buckling Solution and Critical Buckling Magnitude 

 

This m-file solves for the critical buckling solution at different values of the wavenumber. 

This is done by solving the determinant expression for Nx and using the values that give 

rise to this solution to generate a plot of the critical buckling solution. 

function AnalyticalBuckling2 
clc 
clear all 
close all 
  
%Generate Buckling Plot 
m=5; 
L=5;               %Length in y direction 
W=30;              %Width in x direction 
D=10;              %Flexural Rigidity 
nu=0.25;           %Poisson Ratio 
params.D=D; 
params.l=L; 
params.w=W; 
params.nu=nu; 
  
 
%Change the value of m and find smallest value of Nx for solution 
for i=1:37 
    mplot(i,1)=1+(i-1)*0.25; 
    if i==1 
        Nxsol=fzero(@(Nx)buckling(mplot(i,1),Nx,params),50); 
    else 
        Nxsol=fzero(@(Nx)buckling(mplot(i,1),Nx,params),Nxplot(i-1,1)); 
    end 
    Nxplot(i,1)=Nxsol; 
    if i>=2 
        if Nxplot(i,1)< Nxplot(i-1,1) 
            Nxmin=Nxplot(i,1); 
            mmin=mplot(i,1); 
        end 
    end 
end 
disp(' ') 
disp(['Critical Nx = ' num2str(Nxmin)]) 
disp(' ') 
disp(['Critical Wavenumber = ' num2str(mmin)]) 
disp(' ') 
%Stability Plot 
plot(mplot,Nxplot,'*-') 
xlabel('m','Fontsize',14) 
ylabel('N_x','Fontsize',14) 
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title('Plot of N_x against m','Fontsize',16) 
  
%Retrieve Constants from Constant Function  
Cval=buckling2(mmin,Nxmin,params); 
alpha=sqrt(mmin^2*pi^2/(W^2)+sqrt(Nxplot(17,1)/D*mmin^2*pi^2/(W^2))); 
beta=sqrt(-mmin^2*pi^2/(W^2)+sqrt(Nxplot(17,1)/D*mmin^2*pi^2/(W^2))); 
[X,Y]=meshgrid(0:0.75:W,0:0.75:L); 
Z=sin(mmin.*pi.*X./W).*(Cval(1,1).*exp(-
alpha.*Y)+Cval(2,1).*exp(alpha.*Y)+Cval(3,1).*cos(beta.*Y)+Cval(4,1).*s
in(beta.*Y)); 
  
%Plot of Buckling Solution 
figure; 
surf(X,Y,Z) 
colormap cool 
colorbar 
shading interp 
axis equal 
axis off 
lightangle(30,30) 
camorbit(-105,-3) 
set(gcf,'Renderer','zbuffer') 
set(findobj(gca,'type','surface'),... 
    'FaceLighting','phong',... 
    'AmbientStrength',0.3,'DiffuseStrength',.8,... 
    'SpecularStrength',.9,'SpecularExponent',40,... 
    'BackFaceLighting','unlit') 
  
%Determinant Function 
function f=buckling(m,Nx,params) 
l=params.l;   %Length of Gel 
w=params.w; %Width of gel 
alpham=m*pi/w; 
nu=params.nu; %Poisson Ratio 
Def=params.D;  %Flexural Rigidity 
alpha=sqrt(m^2*pi^2/(w^2)+sqrt(Nx/Def*m^2*pi^2/(w^2))); 
beta=sqrt(-m^2*pi^2/(w^2)+sqrt(Nx/Def*m^2*pi^2/(w^2))); 
  
A=1; 
B=1; 
C=1; 
D=0; 
E=-alpha; 
F=alpha; 
G=0; 
H=beta; 
I=(alpha^2*exp(-alpha*l)-alpham^2*nu*exp(-alpha*l)); 
J=(alpha^2*exp(alpha*l)-alpham^2*nu*exp(alpha*l)); 
K=(-beta^2*cos(beta*l)-alpham^2*nu*cos(beta*l)); 
L=(-beta^2*sin(beta*l)-alpham^2*nu*sin(beta*l)); 
M=(-alpha^3*exp(-alpha*l)+alpham^2*(2-nu)*alpha*exp(-alpha*l)); 
N=(alpha^3*exp(alpha*l)-alpham^2*(2-nu)*alpha*exp(alpha*l)); 
O=(beta^3*sin(beta*l)+alpham^2*(2-nu)*beta*sin(beta*l)); 
P=(-beta^3*cos(beta*l)-alpham^2*(2-nu)*beta*cos(beta*l)); 
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%Determinant of 4x4 Matrix 
f=A*(F*(K*P-O*L)-G*(J*P-L*N)+H*(J*O-K*N))-... 
    B*(E*(K*P-O*L)-G*(I*P-L*M)+H*(I*O-K*M))+... 
    C*(E*(J*P-L*N)-F*(I*P-L*M)+H*(I*N-J*M))-... 
    D*(E*(J*O-K*N)-F*(I*O-K*M)+G*(I*N-J*M)); 
  
%Constant Function 
function C=buckling2(m,Nx,params) 
L=params.l;   %Length of Gel 
W=params.w; %Width of gel 
alpham=m*pi/W; 
nu=params.nu; %Poisson Ratio 
Def=params.D;  %Flexural Rigidity 
alpha=sqrt(m^2*pi^2/(W^2)+sqrt(Nx/Def*m^2*pi^2/(W^2))); 
beta=sqrt(-m^2*pi^2/(W^2)+sqrt(Nx/Def*m^2*pi^2/(W^2))); 
  
A=[1 1 1 0; -alpha alpha 0 beta;...  
    (alpha^2*exp(-alpha*L)-alpham^2*nu*exp(-alpha*L)) ... 
    (alpha^2*exp(alpha*L)-alpham^2*nu*exp(alpha*L)) ... 
    (-beta^2*cos(beta*L)-alpham^2*nu*cos(beta*L)) ... 
    (-beta^2*sin(beta*L)-alpham^2*nu*sin(beta*L));... 
    (-alpha^3*exp(-alpha*L)+alpham^2*(2-nu)*alpha*exp(-alpha*L)) ... 
    (alpha^3*exp(alpha*L)-alpham^2*(2-nu)*alpha*exp(alpha*L)) ... 
    (beta^3*sin(beta*L)+alpham^2*(2-nu)*beta*sin(beta*L)) ... 
    (-beta^3*cos(beta*L)-alpham^2*(2-nu)*beta*cos(beta*L))]; 
c=[0;0;0;0]; 
Amat=[A c]; 
%Making C4=1 
Aref=rref(Amat); 
C=[-Aref(1,4);-Aref(2,4);-Aref(3,4);1]; 
 

Change m and L/W to Determine Critical Nx 

function AnalyticalBuckling9 
clc 
clear all 
close all 
  
%Generate Buckling Plot 
L=7.5;             %Length in y direction 
W=30;              %Width in x direction 
D=10;              %Flexural Rigidity 
nu=0.25;           %Poisson Ratio 
params.D=D; 
params.l=L; 
params.w=W; 
params.nu=nu; 
   
%Change the value of m and find smallest value of Nx for solution 
for i=1:37 
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    mplot(i,1)=1+(i-1)*0.25; 
    if i==1 
        Nxsol=fzero(@(Nx)buckling(mplot(i,1),Nx,params),80); 
    else 
        Nxsol=fzero(@(Nx)buckling(mplot(i,1),Nx,params),Nxplot(i-1,1)); 
    end 
    Nxplot(i,1)=Nxsol; 
end 
L1=15; 
params.l=L1; 
for i=1:37 
    mplot1(i,1)=1+(i-1)*0.25; 
    if i==1 
        Nxsol1=fzero(@(Nx)buckling(mplot1(i,1),Nx,params),50); 
    else 
        Nxsol1=fzero(@(Nx)buckling(mplot1(i,1),Nx,params),Nxplot1(i-
1,1)); 
    end 
    Nxplot1(i,1)=Nxsol1; 
end 
L2=30; 
params.l=L2; 
for i=1:37 
    mplot2(i,1)=1+(i-1)*0.25; 
    if i==1 
        Nxsol2=fzero(@(Nx)buckling(mplot2(i,1),Nx,params),50); 
    else 
        Nxsol2=fzero(@(Nx)buckling(mplot2(i,1),Nx,params),Nxplot2(i-
1,1)); 
    end 
    Nxplot2(i,1)=Nxsol2; 
end 
%Stability Plot 
plot(mplot,Nxplot,'*-',mplot1,Nxplot1,'d-',mplot2,Nxplot2,'p-') 
xlabel('Wavenumber (m)','Fontsize',14) 
ylabel('N_x','Fontsize',14) 
title('Plot of N_x against m','Fontsize',16) 
legend('L/W = 0.25','L/W = 0.5','L/W = 1') 
  
%Determinant Function 
function f=buckling(m,Nx,params) 
l=params.l;   %Length of Gel 
w=params.w; %Width of gel 
alpham=m*pi/w; 
nu=params.nu; %Poisson Ratio 
Def=params.D;  %Flexural Rigidity 
alpha=sqrt(m^2*pi^2/(w^2)+sqrt(Nx/Def*m^2*pi^2/(w^2))); 
beta=sqrt(-m^2*pi^2/(w^2)+sqrt(Nx/Def*m^2*pi^2/(w^2))); 
  
A=1; 
B=1; 
C=1; 
D=0; 
E=-alpha; 
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F=alpha; 
G=0; 
H=beta; 
I=(alpha^2*exp(-alpha*l)-alpham^2*nu*exp(-alpha*l)); 
J=(alpha^2*exp(alpha*l)-alpham^2*nu*exp(alpha*l)); 
K=(-beta^2*cos(beta*l)-alpham^2*nu*cos(beta*l)); 
L=(-beta^2*sin(beta*l)-alpham^2*nu*sin(beta*l)); 
M=(-alpha^3*exp(-alpha*l)+alpham^2*(2-nu)*alpha*exp(-alpha*l)); 
N=(alpha^3*exp(alpha*l)-alpham^2*(2-nu)*alpha*exp(alpha*l)); 
O=(beta^3*sin(beta*l)+alpham^2*(2-nu)*beta*sin(beta*l)); 
P=(-beta^3*cos(beta*l)-alpham^2*(2-nu)*beta*cos(beta*l)); 
%Determinant of 4x4 Matrix 
f=A*(F*(K*P-O*L)-G*(J*P-L*N)+H*(J*O-K*N))-... 
    B*(E*(K*P-O*L)-G*(I*P-L*M)+H*(I*O-K*M))+... 
    C*(E*(J*P-L*N)-F*(I*P-L*M)+H*(I*N-J*M))-... 
    D*(E*(J*O-K*N)-F*(I*O-K*M)+G*(I*N-J*M)); 
 

Change m and D to Determine Critical Nx 

function AnalyticalBuckling8 
clc 
clear all 
close all 
  
%Generate Buckling Plot 
m=5; 
L=5;               %Length in y direction 
W=30;              %Width in x direction 
D=10;              %Flexural Rigidity 
nu=0.25;           %Poisson Ratio 
params.D=D; 
params.l=L; 
params.w=W; 
params.nu=nu; 
   
%Change the value of m and find smallest value of Nx for solution 
for i=1:37 
    mplot(i,1)=1+(i-1)*0.25; 
    if i==1 
        Nxsol=fzero(@(Nx)buckling(mplot(i,1),Nx,params),50); 
    else 
        Nxsol=fzero(@(Nx)buckling(mplot(i,1),Nx,params),Nxplot(i-1,1)); 
    end 
    Nxplot(i,1)=Nxsol; 
end 
D1=20; 
params.D=D1; 
for i=1:37 
    mplot1(i,1)=1+(i-1)*0.25; 
    if i==1 
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        Nxsol1=fzero(@(Nx)buckling(mplot1(i,1),Nx,params),50); 
    else 
        Nxsol1=fzero(@(Nx)buckling(mplot1(i,1),Nx,params),Nxplot1(i-
1,1)); 
    end 
    Nxplot1(i,1)=Nxsol1; 
end 
D2=30; 
params.D=D2; 
for i=1:37 
    mplot2(i,1)=1+(i-1)*0.25; 
    if i==1 
        Nxsol2=fzero(@(Nx)buckling(mplot2(i,1),Nx,params),50); 
    else 
        Nxsol2=fzero(@(Nx)buckling(mplot2(i,1),Nx,params),Nxplot2(i-
1,1)); 
    end 
    Nxplot2(i,1)=Nxsol2; 
end 
%Stability Plot 
plot(mplot,Nxplot,'*-',mplot1,Nxplot1,'d-',mplot2,Nxplot2,'p-') 
xlabel('Wavenumber (m)','Fontsize',14) 
ylabel('N_x','Fontsize',14) 
title('Plot of N_x against m','Fontsize',16) 
legend('D = 10','D = 20','D = 30') 
  
%Determinant Function 
function f=buckling(m,Nx,params) 
l=params.l;   %Length of Gel 
w=params.w; %Width of gel 
alpham=m*pi/w; 
nu=params.nu; %Poisson Ratio 
Def=params.D;  %Flexural Rigidity 
alpha=sqrt(m^2*pi^2/(w^2)+sqrt(Nx/Def*m^2*pi^2/(w^2))); 
beta=sqrt(-m^2*pi^2/(w^2)+sqrt(Nx/Def*m^2*pi^2/(w^2))); 
  
A=1; 
B=1; 
C=1; 
D=0; 
E=-alpha; 
F=alpha; 
G=0; 
H=beta; 
I=(alpha^2*exp(-alpha*l)-alpham^2*nu*exp(-alpha*l)); 
J=(alpha^2*exp(alpha*l)-alpham^2*nu*exp(alpha*l)); 
K=(-beta^2*cos(beta*l)-alpham^2*nu*cos(beta*l)); 
L=(-beta^2*sin(beta*l)-alpham^2*nu*sin(beta*l)); 
M=(-alpha^3*exp(-alpha*l)+alpham^2*(2-nu)*alpha*exp(-alpha*l)); 
N=(alpha^3*exp(alpha*l)-alpham^2*(2-nu)*alpha*exp(alpha*l)); 
O=(beta^3*sin(beta*l)+alpham^2*(2-nu)*beta*sin(beta*l)); 
P=(-beta^3*cos(beta*l)-alpham^2*(2-nu)*beta*cos(beta*l)); 
%Determinant of 4x4 Matrix 
f=A*(F*(K*P-O*L)-G*(J*P-L*N)+H*(J*O-K*N))-... 
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    B*(E*(K*P-O*L)-G*(I*P-L*M)+H*(I*O-K*M))+... 
    C*(E*(J*P-L*N)-F*(I*P-L*M)+H*(I*N-J*M))-... 
    D*(E*(J*O-K*N)-F*(I*O-K*M)+G*(I*N-J*M)); 
 

Change m and Nx to Determine Critical D 

 

This m-file calculates the minimum critical value of flexural rigidity that will give rise to a 

buckling solution at different wavenumbers. 

function AnalyticalBuckling4 
clc 
clear all 
close all 
  
L=5;               %Length in y direction 
W=30;              %Width in x direction 
Nx=30;              
nu=0.25;           %Poisson Ratio 
params.Nx=Nx; 
params.l=L; 
params.w=W; 
params.nu=nu;  
%Change the value of m and find smallest value of D for solution 
for i=1:37 
    mplot(i,1)=1+(i-1)*0.25; 
    if i==1 
        Dsol=fzero(@(Def)buckling(mplot(i,1),Def,params),20); 
    else 
        Dsol=fzero(@(Def)buckling(mplot(i,1),Def,params),Dplot(i-1,1)); 
    end 
    Dplot(i,1)=Dsol; 
end 
Nx=40; 
params.Nx=Nx; 
for i=1:37 
    mplot1(i,1)=1+(i-1)*0.25; 
    if i==1 
        Dsol1=fzero(@(Def)buckling(mplot1(i,1),Def,params),20); 
    else 
        Dsol1=fzero(@(Def)buckling(mplot1(i,1),Def,params),Dplot1(i-
1,1)); 
    end 
    Dplot1(i,1)=Dsol1; 
end 
Nx=50; 
params.Nx=Nx; 
for i=1:37 
    mplot2(i,1)=1+(i-1)*0.25; 
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    if i==1 
        Dsol2=fzero(@(Def)buckling(mplot2(i,1),Def,params),20); 
    else 
        Dsol2=fzero(@(Def)buckling(mplot2(i,1),Def,params),Dplot2(i-
1,1)); 
    end 
    Dplot2(i,1)=Dsol2; 
end 
  
%Stability Plot 
plot(mplot,Dplot,'*-',mplot1,Dplot1,'d-',mplot2,Dplot2,'p-') 
xlabel('Wavenumber (m)','Fontsize',14) 
ylabel('Flexural Rigidity (D)','Fontsize',14) 
title('Plot of D against m','Fontsize',16) 
legend('N_x= 30','N_x= 40','N_x= 50') 
  
%Determinant Function 
function f=buckling(m,Def,params) 
l=params.l;   %Length of Gel 
w=params.w; %Width of gel 
alpham=m*pi/w; 
nu=params.nu; %Poisson Ratio 
Nx=params.Nx;  %Flexural Rigidity 
alpha=sqrt(m^2*pi^2/(w^2)+sqrt(Nx/Def*m^2*pi^2/(w^2))); 
beta=sqrt(-m^2*pi^2/(w^2)+sqrt(Nx/Def*m^2*pi^2/(w^2))); 
  
A=1; 
B=1; 
C=1; 
D=0; 
E=-alpha; 
F=alpha; 
G=0; 
H=beta; 
I=(alpha^2*exp(-alpha*l)-alpham^2*nu*exp(-alpha*l)); 
J=(alpha^2*exp(alpha*l)-alpham^2*nu*exp(alpha*l)); 
K=(-beta^2*cos(beta*l)-alpham^2*nu*cos(beta*l)); 
L=(-beta^2*sin(beta*l)-alpham^2*nu*sin(beta*l)); 
M=(-alpha^3*exp(-alpha*l)+alpham^2*(2-nu)*alpha*exp(-alpha*l)); 
N=(alpha^3*exp(alpha*l)-alpham^2*(2-nu)*alpha*exp(alpha*l)); 
O=(beta^3*sin(beta*l)+alpham^2*(2-nu)*beta*sin(beta*l)); 
P=(-beta^3*cos(beta*l)-alpham^2*(2-nu)*beta*cos(beta*l)); 
%Determinant of 4x4 Matrix 
f=A*(F*(K*P-O*L)-G*(J*P-L*N)+H*(J*O-K*N))-... 
    B*(E*(K*P-O*L)-G*(I*P-L*M)+H*(I*O-K*M))+... 
    C*(E*(J*P-L*N)-F*(I*P-L*M)+H*(I*N-J*M))-... 
    D*(E*(J*O-K*N)-F*(I*O-K*M)+G*(I*N-J*M)); 
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Change m and Nx to Determine Critical L/W 

 

This m-file calculates the minimum critical value of the length and width ratio that will 

give rise to a buckling solution at different wavenumbers. 

function AnalyticalBuckling7 
clc 
clear all 
close all 
  
 
W=30;              %Width in x direction 
Def=10;              %Flexural Rigidity 
nu=0.25;           %Poisson Ratio 
Nx=10; 
params.Nx=Nx; 
params.nu=nu; 
params.w=W; 
params.Def=Def; 
  
%Change the value of m and find smallest value of L for solution 
for i=1:33 
    mplot(i,1)=1+(i-1)*0.25; 
    if i==1 
        Lsol=fzero(@(L)buckling(mplot(i,1),L,params),2); 
    else 
        Lsol=fzero(@(L)buckling(mplot(i,1),L,params),Lplot(i-1,1)); 
    end 
    Lplot(i,1)=Lsol; 
end 
Nx=20; 
params.Nx=Nx; 
for i=1:48 
    mplot1(i,1)=1+(i-1)*0.25; 
    if i==1 
        Lsol1=fzero(@(L)buckling(mplot1(i,1),L,params),2); 
    else 
        Lsol1=fzero(@(L)buckling(mplot1(i,1),L,params),Lplot1(i-1,1)); 
    end 
    Lplot1(i,1)=Lsol1; 
end 
Nx=30; 
params.Nx=Nx; 
for i=1:30 
    mplot2(i,1)=1+(i-1)*0.5; 
    if i==1 
        Lsol2=fzero(@(L)buckling(mplot2(i,1),L,params),2); 
    else 
        Lsol2=fzero(@(L)buckling(mplot2(i,1),L,params),Lplot2(i-1,1)); 
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    end 
    Lplot2(i,1)=Lsol2; 
end 
%Stability Plot 
plot(mplot,Lplot/W,'*-',mplot1,Lplot1/W,'d-',mplot2,Lplot2/W,'p-') 
xlabel('m','Fontsize',14) 
ylabel('L / W','Fontsize',14) 
title('Plot of L / W against m','Fontsize',16) 
legend('N_x= 10','N_x= 20','N_x= 30') 
  
%Determinant Function 
function f=buckling(m,l,params) 
nu=params.nu;   %Poisson Ratio 
w=params.w; %Width of gel 
alpham=m*pi/w; 
Def=params.Def; %Flexural Rigidity 
Nx=params.Nx;   
alpha=sqrt(m^2*pi^2/(w^2)+sqrt(Nx/Def*m^2*pi^2/(w^2))); 
beta=sqrt(-m^2*pi^2/(w^2)+sqrt(Nx/Def*m^2*pi^2/(w^2))); 
  
A=1; 
B=1; 
C=1; 
D=0; 
E=-alpha; 
F=alpha; 
G=0; 
H=beta; 
I=(alpha^2*exp(-alpha*l)-alpham^2*nu*exp(-alpha*l)); 
J=(alpha^2*exp(alpha*l)-alpham^2*nu*exp(alpha*l)); 
K=(-beta^2*cos(beta*l)-alpham^2*nu*cos(beta*l)); 
L=(-beta^2*sin(beta*l)-alpham^2*nu*sin(beta*l)); 
M=(-alpha^3*exp(-alpha*l)+alpham^2*(2-nu)*alpha*exp(-alpha*l)); 
N=(alpha^3*exp(alpha*l)-alpham^2*(2-nu)*alpha*exp(alpha*l)); 
O=(beta^3*sin(beta*l)+alpham^2*(2-nu)*beta*sin(beta*l)); 
P=(-beta^3*cos(beta*l)-alpham^2*(2-nu)*beta*cos(beta*l)); 
%Determinant of 4x4 Matrix 
f=A*(F*(K*P-O*L)-G*(J*P-L*N)+H*(J*O-K*N))-... 
    B*(E*(K*P-O*L)-G*(I*P-L*M)+H*(I*O-K*M))+... 
    C*(E*(J*P-L*N)-F*(I*P-L*M)+H*(I*N-J*M))-... 
    D*(E*(J*O-K*N)-F*(I*O-K*M)+G*(I*N-J*M)); 
 

Strain Energy and Work Equation Generator 

 

This m-file uses the Symbolic Math Toolbox in MATLAB to determine expressions for the 

work and strain energy of the hydrogel. 
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clc 
clear all 
  
syms c1 c2 c3 c4 a b x y alpham alpha beta nu D Nx W L 
  
%Solution to Biharmonic Equation 
Z=sin(alpham*x)*(c1*exp(-
alpha*y)+c2*exp(alpha*y)+c3*cos(beta*y)+c4*sin(beta*y)) 
  
%Equation for Work Done on Hydrogel 
Work=-Nx/2*int(int((diff(Z,x)^2),x,0,W),y,0,L); 
  
%Simplified Work Expression 
SimpleWork=simplify(Work) 
  
%Differentials in Strain Energy Equation 
difftwox=diff(diff(Z,x),x); 
difftwoy=diff(diff(Z,y),y); 
difftwoxy=diff(diff(Z,y),x); 
  
%Strain Energy Equation 
StrainEnergy=D/2*int(int((difftwox+difftwoy)^2-2*(1-
nu)*(difftwox*difftwoy... 
    -(difftwoxy)^2),y,0,L),x,0,W); 
  
%Simplified Strain Energy Expression 
SimpleStrainEnergy=simplify(StrainEnergy) 
 

Strain Energy and Work Function 

 

This m-file uses the determined expressions for work and strain energy to determine 

critical values of Nx at different wavenumbers. This is used as a means to verify that the 

results obtained are in agreement even though different methods were required to obtain 

them. 

function StrainEnergy 
clc 
close all 
clear all 
W=30; 
L=5; 
D=10; 
nu=0.25; 
params.W=W; 
params.L=L; 
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params.nu=nu; 
params.D=D; 
  
N=18; 
for i=1:N 
    mval(i,1)=1+(i-1)*0.5; 
    if i==1 
        Nxsol(i,1)=fzero(@(Nx)buckling(mval(i,1),Nx,params),30); 
    else 
        Nxsol(i,1)=fzero(@(Nx)buckling(mval(i,1),Nx,params),Nxsol(i-
1,1)); 
    end 
end 
  
%Value of m to be analyzed 
meval=1; 
  
%Constants that cause buckling 
C=buckling2(meval,Nxsol(meval+(meval-1),1),params); 
    params.c1=C(1); 
    params.c2=C(2); 
    params.c3=C(3); 
    params.c4=C(4); 
for i=1:N+10 
    Nxval(i,1)=0.5+(i-1)*1.25; 
    work1(i,1)=workfun(meval,Nxval(i,1),params); 
    strain1(i,1)=strainfun(meval,Nxval(i,1),params); 
end 
plot(Nxval,work1,'*-',Nxval,strain1,'^-r') 
xlabel('N_x','Fontsize',14) 
ylabel('Energy','Fontsize',14) 
title(['Plot of Energy against N_x when m = ' 
num2str(meval)],'Fontsize',16) 
legend('Work','Strain') 
  
Nxcrit=fzero(@(Nx)(workfun(meval,Nx,params)-
(strainfun(meval,Nx,params))),30) 
  
function f=workfun(m,Nx,params) 
c1=params.c1; 
c2=params.c2; 
c3=params.c3; 
c4=params.c4; 
D=params.D; 
W=params.W; 
L=params.L; 
alpham=m*pi/W; 
alpha=sqrt(alpham^2+sqrt(Nx/D*alpham^2)); 
beta=sqrt(-alpham^2+sqrt(Nx/D*alpham^2)); 
  
f=1/64*Nx*alpham*(-4*c2^2*sin(2*alpham*W)*beta*alpha^2+8*c1*c4*... 
    exp(-alpha*L)*alpha*beta^2*sin(beta*L-2*alpham*W)-
8*c1^2*alpham*W*... 
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    exp(-alpha*L)^2*beta*alpha^2-
8*c2^2*alpham*W*beta^3+8*c2^2*alpham*... 
    W*exp(alpha*L)^2*beta^3+8*c3^2*alpham*W*L*alpha^3*beta+2*c3*c4*... 
    sin(2*beta*L-2*alpham*W)*alpha*beta^2-8*c1*c3*exp(-
alpha*L)*alpha^2*... 
    
beta*sin(beta*L+2*alpham*W)+8*c3*c4*alpham*W*alpha*beta^2+8*c3*c4*... 
    alpham*W*alpha^3-
8*c2^2*alpham*W*beta*alpha^2+8*c1^2*alpham*W*beta*... 
    
alpha^2+4*c1^2*sin(2*alpham*W)*beta*alpha^2+8*c1^2*alpham*W*beta^3+4*..
. 
    c3*c4*sin(2*alpham*W)*alpha^3-
4*c2^2*sin(2*alpham*W)*beta^3+4*c1^2*... 
    
sin(2*alpham*W)*beta^3+16*c1*c3*alpha^2*beta*sin(2*alpham*W)+4*c3*c4*..
. 
    sin(2*alpham*W)*alpha*beta^2+16*c1*c4*alpha*beta^2*sin(2*alpham*W)-
... 
    
32*c2*c3*alpham*W*alpha^2*beta+32*c1*c4*alpham*W*alpha*beta^2+32*c1*... 
    
c3*alpham*W*alpha^2*beta+32*c2*c4*alpham*W*alpha*beta^2+16*c2*c4*... 
    alpha*beta^2*sin(2*alpham*W)-
16*c2*c3*alpha^2*beta*sin(2*alpham*W)... 
    -c3^2*cos(2*beta*L+2*alpham*W)*alpha^3-c4^2*cos(2*beta*L-
2*alpham*W)... 
    *alpha^3+c3^2*cos(2*beta*L-
2*alpham*W)*alpha^3+c4^2*cos(2*beta*L+2*... 
    
alpham*W)*alpha^3+8*c3^2*alpham*W*L*alpha*beta^3+8*c4^2*alpham*W*L*... 
    alpha^3*beta+8*c4^2*alpham*W*L*alpha*beta^3+32*c1*c2*alpham*W*L*... 
    alpha^3*beta+32*c1*c2*alpham*W*L*alpha*beta^3-
4*c1^2*sin(2*alpham*W)... 
    *exp(-alpha*L)^2*beta^3-c4^2*cos(2*beta*L-2*alpham*W)*alpha*... 
    beta^2+c3^2*cos(2*beta*L-2*alpham*W)*alpha*beta^2+4*c2^2*... 
    sin(2*alpham*W)*exp(alpha*L)^2*beta^3-2*c3*c4*sin(2*beta*L+2*... 
    alpham*W)*alpha^3-
c3^2*cos(2*beta*L+2*alpham*W)*alpha*beta^2+c4^2*... 
    cos(2*beta*L+2*alpham*W)*alpha*beta^2+2*c3*c4*sin(2*beta*L-
2*alpham*... 
    W)*alpha^3+4*c3^2*alpham*W*sin(2*beta*L)*alpha^3-8*c2*c3*... 
    
exp(alpha*L)*alpha*beta^2*cos(beta*L+2*alpham*W)+8*c2^2*alpham*W*... 
    
exp(alpha*L)^2*beta*alpha^2+16*c1*c2*sin(2*alpham*W)*L*alpha^3*beta-... 
    8*c1*c3*exp(-
alpha*L)*alpha*beta^2*cos(beta*L+2*alpham*W)+4*c3^2*... 
    alpham*W*sin(2*beta*L)*alpha*beta^2-4*c1^2*sin(2*alpham*W)*... 
    exp(-
alpha*L)^2*beta*alpha^2+4*c2^2*sin(2*alpham*W)*exp(alpha*L)^2*... 
    beta*alpha^2-2*c3*c4*sin(2*beta*L+2*alpham*W)*alpha*beta^2-
8*c1^2*... 
    alpham*W*exp(-alpha*L)^2*beta^3-4*c4^2*alpham*W*sin(2*beta*L)*... 
    alpha^3-4*c4^2*alpham*W*sin(2*beta*L)*alpha*beta^2+16*c1*c2*... 
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    sin(2*alpham*W)*L*alpha*beta^3+4*c4^2*sin(2*alpham*W)*L*alpha^3*... 
beta+4*c4^2*sin(2*alpham*W)*L*alpha*beta^3+4*c3^2*sin(2*alpham*W)*L*... 
    alpha^3*beta+4*c3^2*sin(2*alpham*W)*L*alpha*beta^3-
8*c3*c4*alpham*W*... 
    cos(2*beta*L)*alpha^3-8*c3*c4*alpham*W*cos(2*beta*L)*alpha*beta^2-
8*... 
    c2*c4*exp(alpha*L)*alpha^2*beta*cos(beta*L+2*alpham*W)-8*c2*c4*... 
    exp(alpha*L)*alpha*beta^2*sin(beta*L+2*alpham*W)-8*c1*c4*exp(-
alpha*L)... 
    *alpha^2*beta*cos(beta*L-2*alpham*W)+8*c1*c3*exp(-
alpha*L)*alpha*... 
    beta^2*cos(beta*L-2*alpham*W)+8*c1*c3*exp(-alpha*L)*alpha^2*beta... 
    *sin(beta*L-2*alpham*W)+8*c1*c4*exp(-alpha*L)*alpha^2*beta*... 
    cos(beta*L+2*alpham*W)-8*c1*c4*exp(-alpha*L)*alpha*beta^2*... 
    sin(beta*L+2*alpham*W)+8*c2*c3*exp(alpha*L)*alpha^2*beta*... 
    sin(beta*L+2*alpham*W)+8*c2*c3*exp(alpha*L)*alpha*beta^2*... 
    cos(beta*L-2*alpham*W)-
8*c2*c3*exp(alpha*L)*alpha^2*beta*sin(beta*L-... 
    2*alpham*W)+8*c2*c4*exp(alpha*L)*alpha^2*beta*cos(beta*L-
2*alpham*W)... 
    +8*c2*c4*exp(alpha*L)*alpha*beta^2*sin(beta*L-2*alpham*W)-
32*c1*c4*... 
    alpham*W*exp(-alpha*L)*alpha*beta^2*cos(beta*L)-
32*c1*c4*alpham*W*... 
    exp(-alpha*L)*alpha^2*beta*sin(beta*L)-32*c1*c3*alpham*W*... 
    exp(-alpha*L)*alpha^2*beta*cos(beta*L)+32*c1*c3*alpham*W*... 
    exp(-alpha*L)*alpha*beta^2*sin(beta*L)+32*c2*c3*alpham*W*... 
    
exp(alpha*L)*alpha^2*beta*cos(beta*L)+32*c2*c3*alpham*W*exp(alpha*L)*..
. 
    alpha*beta^2*sin(beta*L)-
32*c2*c4*alpham*W*exp(alpha*L)*alpha*beta^2*... 
    
cos(beta*L)+32*c2*c4*alpham*W*exp(alpha*L)*alpha^2*beta*sin(beta*L))... 
    /(alpha^2+beta^2)/alpha/beta; 
  
function f=strainfun(m,Nx,params) 
  
D=params.D; 
c1=params.c1; 
c2=params.c2; 
c3=params.c3; 
c4=params.c4; 
W=params.W; 
L=params.L; 
nu=params.nu; 
alpham=m*pi/W; 
alpha=sqrt(alpham^2+sqrt(Nx/D*alpham^2)); 
beta=sqrt(-alpham^2+sqrt(Nx/D*alpham^2)); 
  
f=1/64*D*(32*alpham^5*W*c2*c4*beta^2*alpha+16*alpha*L*alpham^3*c4^2*... 
    
beta^5*W+16*alpha*L*alpham^3*c3^2*beta^5*W+8*alpha*L*alpham^5*W*c4^2*..
. 
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beta^3+8*alpha*L*W*c4^2*beta^7*alpham-8*alpham^2*alpha^4*beta*nu*c3*... 
c2*exp(alpha*L)*sin(beta*L-
2*alpham*W)+8*alpham^2*alpha^4*beta*nu*c3*... 
    c1*exp(-alpha*L)*sin(beta*L-2*alpham*W)-8*alpham^4*c1*c4*... 
    exp(-alpha*L)*alpha*beta^2*sin(beta*L-2*alpham*W)-16*alpham^2*... 
    alpha^2*beta^3*c2*c4*exp(alpha*L)*cos(beta*L+2*alpham*W)-8*c1^2*... 
    alpha^6*exp(-alpha*L)^2*beta*W*alpham-32*c2*alpha^3*c3*beta^4*... 
    exp(alpha*L)*sin(beta*L)*W*alpham+8*beta^4*W*c3*c4*alpham*alpha^3-
16*... 
    beta^2*alpham^3*W*c3*c4*alpha^3+32*beta^2*alpham^3*nu*c3*c4*W*... 
    
alpha^3+8*alpham^5*W*c3*c4*alpha^3+8*alpha*L*alpham^5*W*c3^2*beta^3+... 
    
32*alpha*L*alpham^5*c1*c2*W*beta^3+32*beta^4*alpham^3*nu*c3*c4*W*... 
    alpha+8*beta^6*W*c3*c4*alpham*alpha-8*alpha^6*c2^2*W*beta*alpham-
16*... 
    
alpham^4*sin(2*alpham*W)*beta^2*c1*c4*alpha+8*c1^2*alpha^6*W*beta*... 
    alpham-
4*beta^4*c4^2*sin(2*beta*L)*alpha^3*W*alpham+32*c2*alpha^3*c4*... 
    beta^4*exp(alpha*L)*cos(beta*L)*W*alpham-
24*alpham^2*alpha^2*beta^3*... 
    nu*c1*c3*exp(-alpha*L)*sin(beta*L-2*alpham*W)-32*alpham^5*c1*c4*... 
    exp(-alpha*L)*alpha^2*beta*sin(beta*L)*W-32*alpham^5*c1*c4*... 
    exp(-alpha*L)*alpha*beta^2*cos(beta*L)*W-8*alpham^4*c2*c4*... 
    exp(alpha*L)*alpha^2*beta*cos(beta*L-
2*alpham*W)+8*alpha*L*W*c3^2*... 
    beta^7*alpham-
32*alpham^3*c1*alpha^4*nu*W*c3*beta+16*sin(2*alpham*W)*... 
    c1*alpha^4*c3*beta^3+16*alpham^3*W*c1^2*alpha^2*beta^3-
8*alpham^5*... 
    c2^2*W*beta*alpha^2-4*alpham^4*c2^2*exp(alpha*L)^2*beta*alpha^2*... 
    sin(2*alpham*W)+8*alpham^2*alpha*beta^4*nu*c1*c3*exp(-alpha*L)*... 
    cos(beta*L+2*alpham*W)-
8*alpham^2*alpha^4*beta*nu*c4*c2*exp(alpha*L)*... 
    cos(beta*L+2*alpham*W)-32*alpham^3*alpha^3*beta^2*nu*c1*c4*... 
    exp(-
alpha*L)*cos(beta*L)*W+8*alpham^5*c2^2*exp(alpha*L)^2*beta^3*W+... 
    32*alpham^5*c1*alpha^2*W*c3*beta+4*alpha^6*sin(2*alpham*W)*c2^2*... 
    
beta+4*alpham^4*sin(2*alpham*W)*c2^2*beta^3+32*alpham^3*nu*c2*c3*... 
    
alpha^4*W*beta+32*alpha^4*alpham^3*c2^2*W*nu*beta+32*alpha^2*alpham^... 
    3*c2^2*W*nu*beta^3-4*c1^2*alpha^4*sin(2*alpham*W)*beta^3-4*c4^2*... 
    
alpham^5*sin(2*beta*L)*alpha*beta^2*W+32*alpham^3*alpha^4*beta*nu*... 
    c3*c1*exp(-alpha*L)*cos(beta*L)*W-
32*alpham^3*alpha^4*beta*nu*c3*c2*... 
    exp(alpha*L)*cos(beta*L)*W-
8*alpham^4*c2*c4*exp(alpha*L)*alpha*beta^... 
    2*sin(beta*L-2*alpham*W)+16*alpham^2*alpha^3*beta^2*c3*c2*... 
    
exp(alpha*L)*cos(beta*L+2*alpham*W)+8*alpham^2*alpha^4*beta*nu*c4*... 
    c1*exp(-alpha*L)*cos(beta*L+2*alpham*W)-
16*alpham^3*alpha*beta^4*nu*... 
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c4^2*sin(2*beta*L)*W+8*alpham^5*W*c3*c4*alpha*beta^2+16*sin(2*alpham*..
. 
    W)*beta^4*c1*alpha^3*c4-
16*sin(2*alpham*W)*c2*alpha^4*c3*beta^3+16*... 
    alpham^2*sin(2*alpham*W)*c1*alpha^4*nu*c3*beta-
32*c1*alpha^4*beta^3*... 
    W*c3*alpham+32*alpham^3*nu*c2*c3*beta^3*W*alpha^2+48*alpham^2*... 
    sin(2*alpham*W)*nu*c2*alpha^3*c4*beta^2-
32*alpham^2*sin(2*alpham*W)*... 
    c2*alpha^3*c4*beta^2-48*alpham^2*sin(2*alpham*W)*beta^3*c1*nu*... 
    alpha^2*c3-8*alpham^5*c2^2*W*beta^3-
64*alpham^3*c2*alpha^2*c3*beta^3*... 
    W+32*alpham^3*nu*c2*alpha^3*c4*beta^2*W-8*alpha^2*alpham^2*... 
    
sin(2*alpham*W)*c2^2*beta^3+32*alpham^2*sin(2*alpham*W)*beta^3*c1*... 
    
alpha^2*c3+48*alpham^2*sin(2*alpham*W)*beta^2*c1*nu*alpha^3*c4+4*... 
    
c3^2*alpham^5*sin(2*beta*L)*alpha^3*W+24*alpham^2*alpha^3*beta^2*nu*... 
    c1*c3*exp(-alpha*L)*cos(beta*L-2*alpham*W)+4*c3^2*alpham^5*... 
    sin(2*beta*L)*alpha*beta^2*W-
8*alpham^5*c3*c4*cos(2*beta*L)*alpha*... 
    beta^2*W+8*alpham^4*c2*c4*exp(alpha*L)*alpha^2*beta*... 
    cos(beta*L+2*alpham*W)+16*alpham^2*alpha^2*beta^3*c1*c4*... 
    exp(-alpha*L)*cos(beta*L+2*alpham*W)+c3^2*alpham^4*alpha*beta^2*... 
    cos(2*beta*L+2*alpham*W)+32*c1*alpha^3*c4*beta^4*exp(-alpha*L)*... 
    cos(beta*L)*W*alpham-8*alpha^4*c2^2*W*beta^3*alpham-4*alpha*L*... 
    alpham^4*sin(2*alpham*W)*c3^2*beta^3+8*c2*alpha^3*c3*beta^4*... 
    exp(alpha*L)*cos(beta*L-2*alpham*W)-2*c3*beta^4*c4*alpha^3*... 
    sin(2*beta*L-2*alpham*W)-8*c2*alpha^3*c4*beta^4*exp(alpha*L)*... 
    sin(beta*L+2*alpham*W)-2*c3*beta^6*c4*alpha*sin(2*beta*L-2*... 
    alpham*W)+c3^2*alpham^4*alpha^3*cos(2*beta*L+2*alpham*W)-
32*c1^2*... 
    alpha^4*alpham^3*W*nu*beta-
32*alpham^3*nu*c1^2*alpha^2*W*beta^3+4*... 
    alpha^4*sin(2*alpham*W)*c2^2*beta^3-
16*alpham^2*alpha^2*beta^3*c1*... 
    c3*exp(-alpha*L)*sin(beta*L+2*alpham*W)+4*alpham^2*c3*c4*beta^2*... 
    alpha^3*sin(2*beta*L+2*alpham*W)+2*beta^2*c4^2*alpham^2*alpha^3*... 
    cos(2*beta*L-2*alpham*W)-2*alpham^2*alpha*beta^4*c3^2*... 
    cos(2*beta*L-2*alpham*W)+24*alpham^2*alpha^2*beta^3*nu*c2*c3*... 
    exp(alpha*L)*sin(beta*L-
2*alpham*W)+64*alpham^3*alpha^2*beta^3*c2*... 
    c4*exp(alpha*L)*sin(beta*L)*W-2*alpham^2*alpha^3*beta^2*c3^2*... 
    cos(2*beta*L-2*alpham*W)-4*L*sin(2*alpham*W)*beta^7*c3^2*... 
    alpha-beta^4*c3^2*alpha^3*cos(2*beta*L-2*alpham*W)-
32*alpham^3*alpha*... 
    beta^4*nu*c1*c4*exp(-alpha*L)*cos(beta*L)*W+24*alpham^2*alpha^2*... 
    beta^3*nu*c2*c4*exp(alpha*L)*cos(beta*L+2*alpham*W)-32*alpham^3*... 
    alpha^2*beta^3*nu*c2^2*exp(alpha*L)^2*W-
16*alpham^3*alpha^2*beta^3*... 
    c1^2*exp(-alpha*L)^2*W+24*alpham^2*alpha^3*beta^2*nu*c3*c2*... 
    exp(alpha*L)*cos(beta*L-2*alpham*W)-
8*alpham^5*c3*c4*cos(2*beta*L)*... 
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    alpha^3*W+8*alpham^5*W*c1^2*beta^3-32*alpham^5*c1*c3*exp(-
alpha*L)*... 
    alpha^2*beta*cos(beta*L)*W+32*alpham^5*c1*c3*exp(-
alpha*L)*alpha*... 
    beta^2*sin(beta*L)*W+4*alpham^2*c3*c4*beta^4*alpha*... 
    sin(2*beta*L+2*alpham*W)-8*alpham^2*alpha*beta^4*nu*c2*c4*... 
    exp(alpha*L)*sin(beta*L-2*alpham*W)-8*alpham^4*c1*c3*exp(-
alpha*L)*... 
    alpha^2*beta*sin(beta*L-2*alpham*W)-
24*alpham^2*alpha^2*beta^3*nu*... 
    c2*c4*exp(alpha*L)*cos(beta*L-2*alpham*W)+8*alpham^4*c2*c3*... 
    
exp(alpha*L)*alpha*beta^2*cos(beta*L+2*alpham*W)+8*alpham^2*c1^2*... 
    alpha^2*sin(2*alpham*W)*beta^3-32*alpham^2*sin(2*alpham*W)*c2*... 
    alpha^2*c3*beta^3-32*alpham^3*beta^3*c1*nu*alpha^2*c3*W-
32*beta^4*... 
    c1*W*alpha^3*c4*alpham-
64*alpham^3*c1*alpha^3*beta^2*W*c4+32*alpha^... 
    7*L*c1*c2*W*alpham*beta-
64*alpha^5*L*alpham^3*c1*c2*W*beta+16*alpham^... 
    4*sin(2*alpham*W)*c2*c3*alpha^2*beta+32*alpham^5*beta^2*c1*W*c4*... 
    alpha+32*alpha^5*L*c1*c2*W*alpham*beta^3-
16*beta^4*alpham^3*W*c3*... 
    c4*alpha+32*beta^4*alpham^3*c1*nu*c4*W*alpha-
24*alpham^2*alpha^3*... 
    beta^2*nu*c1*c3*exp(-alpha*L)*cos(beta*L+2*alpham*W)+4*alpham^4*... 
    c1^2*exp(-alpha*L)^2*beta*alpha^2*sin(2*alpham*W)-
64*alpham^3*c1*c4*... 
    beta^3*exp(-
alpha*L)*alpha^2*sin(beta*L)*W+8*c2*alpha^3*c4*beta^4*... 
    exp(alpha*L)*sin(beta*L-2*alpham*W)-2*alpham^4*c3*c4*alpha^3*... 
    sin(2*beta*L-2*alpham*W)+8*alpham^2*alpha*beta^4*nu*c1*c4*... 
    exp(-
alpha*L)*sin(beta*L+2*alpham*W)+8*alpham^5*W*c1^2*beta*alpha^2-... 
    
4*alpham^4*c1^2*sin(2*alpham*W)*beta^3+32*alpham^3*nu*c2*c4*beta^4*... 
    
W*alpha+48*alpham^2*sin(2*alpham*W)*nu*c3*c2*beta^3*alpha^2+4*alpham^..
. 
    4*sin(2*alpham*W)*c2^2*beta*alpha^2-
4*c2^2*alpha^4*exp(alpha*L)^2*... 
    beta^3*sin(2*alpham*W)+4*c1^2*alpha^6*exp(-alpha*L)^2*beta*... 
    sin(2*alpham*W)-32*W*c2*alpha^3*c4*beta^4*alpham-32*alpham^2*... 
    sin(2*alpham*W)*c1*alpha^3*c4*beta^2-8*alpha^4*alpham^2*... 
    sin(2*alpham*W)*c2^2*beta-16*alpham^2*sin(2*alpham*W)*nu*c3*c2*... 
    alpha^4*beta-8*alpham^2*alpha^4*beta*nu*c4*c1*exp(-alpha*L)*... 
    cos(beta*L-2*alpham*W)-c4^2*alpham^4*alpha*beta^2*... 
    cos(2*beta*L+2*alpham*W)+32*alpham^3*alpha^4*beta*nu*c4*c1*... 
    exp(-alpha*L)*sin(beta*L)*W-c3^2*alpham^4*alpha*beta^2*... 
    cos(2*beta*L-2*alpham*W)-32*alpham^3*alpha*beta^4*nu*c3*c4*... 
    cos(2*beta*L)*W+64*alpham^3*alpha^3*beta^2*c1*c4*exp(-alpha*L)*... 
    cos(beta*L)*W-8*alpham^2*alpha*beta^4*nu*c1*c3*exp(-alpha*L)*... 
    cos(beta*L-
2*alpham*W)+8*c1^2*alpha^4*alpham^2*sin(2*alpham*W)*beta-... 
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2*beta^4*c4^2*alpham^2*alpha*cos(2*beta*L+2*alpham*W)+24*alpham^2*... 
    alpha^2*beta^3*nu*c1*c4*exp(-alpha*L)*cos(beta*L-2*alpham*W)+64*... 
    
alpham^3*alpha^3*beta^2*c4*c2*exp(alpha*L)*cos(beta*L)*W+16*alpham^2*..
. 
    alpha^3*beta^2*c3*c1*exp(-alpha*L)*cos(beta*L+2*alpham*W)-
8*c2*alpha^... 
    4*c4*beta^3*exp(alpha*L)*cos(beta*L+2*alpham*W)-
24*alpham^2*alpha^... 
    3*beta^2*nu*c3*c2*exp(alpha*L)*cos(beta*L+2*alpham*W)-
24*alpham^2*... 
    alpha^3*beta^2*nu*c1*c4*exp(-
alpha*L)*sin(beta*L+2*alpham*W)+beta^4*... 
    c3^2*alpha^3*cos(2*beta*L+2*alpham*W)+8*c1^2*alpha^4*W*beta^3*... 
    alpham-16*alpham^2*alpha^2*beta^3*c1*c4*exp(-alpha*L)*... 
    cos(beta*L-2*alpham*W)+16*alpham^3*c2^2*alpha^4*exp(alpha*L)^2*... 
    beta*W-32*alpham^3*alpha^3*beta^2*nu*c3*c4*cos(2*beta*L)*W-
2*beta^2*... 
    c4^2*alpham^2*alpha^3*cos(2*beta*L+2*alpham*W)+2*alpham^4*c3*c4*... 
    
alpha^3*sin(2*beta*L+2*alpham*W)+16*alpham^3*alpha^3*beta^2*c3*c4*... 
    cos(2*beta*L)*W+64*alpham^3*alpha^2*beta^3*c2*c3*exp(alpha*L)*... 
    cos(beta*L)*W-16*alpham^4*sin(2*alpham*W)*c2*c4*beta^2*alpha+32*... 
    
beta^2*alpham^3*c1*nu*c4*alpha^3*W+16*alpha^3*L*alpham^3*c3^2*beta^3*..
. 
    W+64*alpham^3*beta^3*c1*alpha^2*c3*W-
16*alpham^2*sin(2*alpham*W)*nu*... 
    c2*c4*beta^4*alpha+16*alpha^3*L*alpham^3*c4^2*beta^3*W-16*L*... 
    sin(2*alpham*W)*alpha^7*c2*c1*beta-
16*L*sin(2*alpham*W)*alpha^5*c2*... 
    c1*beta^3+64*alpha^5*L*alpham^2*sin(2*alpham*W)*nu*c2*c1*beta-
32*... 
    alpha^5*L*alpham^2*sin(2*alpham*W)*c2*c1*beta-
8*c1*alpha^3*c3*beta^4*... 
    exp(-alpha*L)*cos(beta*L+2*alpham*W)-8*c2*alpha^4*c3*beta^3*... 
    exp(alpha*L)*sin(beta*L-2*alpham*W)-4*c3*beta^4*c4*alpha^3*... 
    sin(2*alpham*W)-
24*alpham^2*alpha^3*beta^2*nu*c4*c2*exp(alpha*L)*... 
    
sin(beta*L+2*alpham*W)+16*alpham^2*alpha^3*beta^2*c4*c2*exp(alpha*L)*..
. 
    sin(beta*L+2*alpham*W)+24*alpham^2*alpha^3*beta^2*nu*c4*c2*... 
    exp(alpha*L)*sin(beta*L-2*alpham*W)-8*alpham^5*c1^2*... 
    exp(-alpha*L)^2*beta*alpha^2*W+4*alpham^4*c1^2*exp(-alpha*L)^2*... 
    beta^3*sin(2*alpham*W)-8*alpham^2*alpha^4*beta*nu*c3*c1*... 
    exp(-alpha*L)*sin(beta*L+2*alpham*W)-64*alpham^3*c2*alpha^3*c4*... 
    
beta^2*W+8*alpha^3*L*alpham^5*W*c4^2*beta+8*alpha^3*L*W*c4^2*beta^5*... 
    
alpham+32*alpham^5*c2*c3*exp(alpha*L)*alpha^2*beta*cos(beta*L)*W+24*... 
    alpham^2*alpha^2*beta^3*nu*c1*c3*exp(-alpha*L)*... 
    sin(beta*L+2*alpham*W)+16*alpham^2*alpha^3*beta^2*c1*c4*exp(-
alpha*L)*... 
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    sin(beta*L+2*alpham*W)-
16*alpham^2*alpha^2*beta^3*c2*c3*exp(alpha*L)*... 
    sin(beta*L-2*alpham*W)-16*alpham^2*alpha^3*beta^2*c3*c2*... 
    exp(alpha*L)*cos(beta*L-
2*alpham*W)+8*alpham^4*c2*c4*exp(alpha*L)*... 
    alpha*beta^2*sin(beta*L+2*alpham*W)+8*alpham^2*c2^2*alpha^4*... 
    exp(alpha*L)^2*beta*sin(2*alpham*W)+8*c1*alpha^4*c4*beta^3*... 
    exp(-alpha*L)*cos(beta*L+2*alpham*W)+8*alpha*L*alpham^2*... 
    
sin(2*alpham*W)*beta^5*c3^2+64*alpha^3*L*alpham^2*sin(2*alpham*W)*nu*..
. 
    c2*c1*beta^3+8*alpham^5*c2^2*exp(alpha*L)^2*beta*alpha^2*W-
4*alpham^2*... 
    c3*c4*beta^2*alpha^3*sin(2*beta*L-2*alpham*W)+beta^6*c4^2*alpha*... 
    cos(2*beta*L-2*alpham*W)-8*c1*alpha^4*c4*beta^3*exp(-alpha*L)*... 
    cos(beta*L-2*alpham*W)+32*alpham^3*alpha*beta^4*nu*c1*c3*... 
    exp(-
alpha*L)*sin(beta*L)*W+32*alpham^5*c2*c4*exp(alpha*L)*alpha^2*... 
    beta*sin(beta*L)*W+32*alpham^3*alpha^2*beta^3*nu*c1*c3*... 
    exp(-alpha*L)*cos(beta*L)*W+16*alpham^3*alpha^3*beta^2*nu*c3^2*... 
    sin(2*beta*L)*W-32*alpham^5*c2*c4*exp(alpha*L)*alpha*beta^2*... 
    cos(beta*L)*W-8*alpham^2*alpha^2*beta^3*c1^2*exp(-alpha*L)^2*... 
    sin(2*alpham*W)+16*sin(2*alpham*W)*c2*alpha^3*c4*beta^4-
32*alpham^3*... 
    
alpha^4*beta*nu*c2^2*exp(alpha*L)^2*W+32*alpham^3*alpha^3*beta^2*nu*... 
    c3*c2*exp(alpha*L)*sin(beta*L)*W-
64*alpham^3*alpha^2*beta^3*c1*c3*... 
    exp(-alpha*L)*cos(beta*L)*W-8*alpham^2*alpha*beta^4*nu*c2*c3*... 
    exp(alpha*L)*cos(beta*L-2*alpham*W)+c4^2*alpham^4*alpha*beta^2*... 
    cos(2*beta*L-2*alpham*W)+8*alpham^2*alpha*beta^4*nu*c2*c3*... 
    exp(alpha*L)*cos(beta*L+2*alpham*W)-
8*alpham^2*c3*c4*beta^2*alpha^3*... 
    sin(2*alpham*W)-
4*c1^2*alpha^6*sin(2*alpham*W)*beta+32*alpham^5*c2*... 
    c3*exp(alpha*L)*alpha*beta^2*sin(beta*L)*W-
8*alpham^2*c3*c4*beta^4*... 
    
alpha*sin(2*alpham*W)+8*alpham^2*c2^2*alpha^2*exp(alpha*L)^2*beta^3*... 
    sin(2*alpham*W)+8*alpham^2*alpha^4*beta*nu*c3*c2*exp(alpha*L)*... 
    sin(beta*L+2*alpham*W)+8*alpham^4*c1*c4*exp(-
alpha*L)*alpha*beta^2*... 
    
sin(beta*L+2*alpham*W)+8*c2^2*alpha^6*exp(alpha*L)^2*beta*W*alpham+32*.
.. 
    alpha^3*L*alpham^5*c1*c2*W*beta-4*alpham^2*c3*c4*beta^4*alpha*... 
    sin(2*beta*L-2*alpham*W)-8*alpham^4*c1*c3*exp(-alpha*L)*alpha*... 
    beta^2*cos(beta*L-2*alpham*W)-8*alpham^2*alpha*beta^4*nu*c1*c4*... 
    exp(-alpha*L)*sin(beta*L-2*alpham*W)-8*alpham^5*c1^2*exp(-
alpha*L)^2*... 
    beta^3*W-16*alpham^3*alpha^4*beta*c1^2*exp(-alpha*L)^2*W-
32*alpham^3*... 
    alpha^2*beta^3*nu*c2*c4*exp(alpha*L)*sin(beta*L)*W-
8*c2*alpha^3*c3*... 
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    beta^4*exp(alpha*L)*cos(beta*L+2*alpham*W)-
64*alpha^3*L*alpham^3*c1*... 
    
c2*W*beta^3+8*alpham^2*alpha*beta^4*nu*c2*c4*exp(alpha*L)*sin(beta*... 
    L+2*alpham*W)+32*alpham^3*alpha*beta^4*nu*c2*c3*exp(alpha*L)*... 
    sin(beta*L)*W+2*beta^4*c4^2*alpham^2*alpha*cos(2*beta*L-
2*alpham*W)+... 
    2*alpham^2*alpha*beta^4*c3^2*cos(2*beta*L+2*alpham*W)-4*alpha*L*... 
    alpham^4*sin(2*alpham*W)*c4^2*beta^3-16*alpha*L*alpham^4*... 
    sin(2*alpham*W)*c2*c1*beta^3+8*alpha*L*alpham^2*sin(2*alpham*W)*... 
    beta^5*c4^2+16*c1^2*alpha^4*alpham^3*W*beta-16*alpham^2*alpha^3*... 
    beta^2*c4*c2*exp(alpha*L)*sin(beta*L-2*alpham*W)-
4*c4^2*alpham^5*... 
    sin(2*beta*L)*alpha^3*W-32*alpham^3*alpha^2*beta^3*nu*c2*c3*... 
    exp(alpha*L)*cos(beta*L)*W-8*alpham^4*c1*c4*exp(-
alpha*L)*alpha^2*... 
    beta*cos(beta*L+2*alpham*W)+8*c1*alpha^3*c4*beta^4*exp(-
alpha*L)*... 
    sin(beta*L-2*alpham*W)-16*alpha*L*alpham^2*sin(2*alpham*W)*c3^2*... 
    beta^5*nu-16*alpha*L*alpham^2*sin(2*alpham*W)*c4^2*beta^5*nu+8*... 
    alpha^3*L*alpham^5*W*c3^2*beta-
8*alpham^4*c2*c3*exp(alpha*L)*alpha*... 
    beta^2*cos(beta*L-2*alpham*W)-32*alpham^3*alpha*beta^4*nu*c2*c4*... 
    exp(alpha*L)*cos(beta*L)*W-32*alpham^3*alpha^4*beta*nu*c4*c2*... 
    exp(alpha*L)*sin(beta*L)*W+16*alpham^2*alpha^2*beta^3*c2*c3*... 
    exp(alpha*L)*sin(beta*L+2*alpham*W)-
8*alpham^3*alpha*beta^4*c3^2*... 
    sin(2*beta*L)*W+16*alpham^2*alpha^2*beta^3*c1*c3*exp(-alpha*L)*... 
    sin(beta*L-2*alpham*W)-
8*alpham^4*c2*c3*exp(alpha*L)*alpha^2*beta*... 
    sin(beta*L+2*alpham*W)-16*alpham^2*alpha^3*beta^2*c1*c4*... 
    exp(-alpha*L)*sin(beta*L-2*alpham*W)+8*alpham^4*c1*c3*exp(-
alpha*L)*... 
    
alpha^2*beta*sin(beta*L+2*alpham*W)+24*alpham^2*alpha^3*beta^2*nu*c1*..
. 
    c4*exp(-alpha*L)*sin(beta*L-2*alpham*W)-
4*alpham^4*c3*c4*alpha^3*... 
    sin(2*alpham*W)+2*c3*beta^4*c4*alpha^3*sin(2*beta*L+2*alpham*W)-
4*... 
    alpham^4*c1^2*sin(2*alpham*W)*beta*alpha^2-16*alpham^3*alpha^3*... 
    beta^2*nu*c4^2*sin(2*beta*L)*W+16*alpham^3*alpha*beta^4*c3*c4*... 
    cos(2*beta*L)*W+32*alpham^3*alpha^3*beta^2*nu*c3*c1*exp(-
alpha*L)*... 
    
sin(beta*L)*W+16*alpham^3*alpha*beta^4*nu*c3^2*sin(2*beta*L)*W+16*... 
    alpham^2*alpha^2*beta^3*c2*c4*exp(alpha*L)*cos(beta*L-
2*alpham*W)+32*... 
    alpham^3*alpha^2*beta^3*nu*c1*c4*exp(-alpha*L)*sin(beta*L)*W-32*... 
    alpham^5*W*c2*c3*alpha^2*beta-16*alpha^2*alpham^3*c2^2*W*beta^3-
c4^2*... 
    alpham^4*alpha^3*cos(2*beta*L+2*alpham*W)-c3^2*alpham^4*alpha^3*... 
    cos(2*beta*L-2*alpham*W)-beta^6*c3^2*alpha*cos(2*beta*L-
2*alpham*W)-... 



www.manaraa.com

91 

Appendix G Continued 

beta^6*c4^2*alpha*cos(2*beta*L+2*alpham*W)+c4^2*alpham^4*alpha^3*... 
    cos(2*beta*L-
2*alpham*W)+beta^6*c3^2*alpha*cos(2*beta*L+2*alpham*W)+... 
    beta^4*c4^2*alpha^3*cos(2*beta*L-2*alpham*W)+8*alpham^4*c1*c3*... 
    exp(-alpha*L)*alpha*beta^2*cos(beta*L+2*alpham*W)-
8*alpham^3*alpha^3*... 
    beta^2*c3^2*sin(2*beta*L)*W+32*alpham^3*alpha^4*beta*nu*c1^2*... 
    exp(-alpha*L)^2*W-4*alpham^4*c2^2*exp(alpha*L)^2*beta^3*... 
    sin(2*alpham*W)+8*alpham^4*c1*c4*exp(-alpha*L)*alpha^2*beta*... 
    cos(beta*L-2*alpham*W)-32*alpham^3*alpha^3*beta^2*nu*c4*c2*... 
    exp(alpha*L)*cos(beta*L)*W+8*alpha^3*L*W*c3^2*beta^5*alpham-4*... 
    alpham^4*c3*c4*alpha*beta^2*sin(2*alpham*W)-
2*alpham^4*c3*c4*alpha*... 
    beta^2*sin(2*beta*L-2*alpham*W)+2*alpham^4*c3*c4*alpha*beta^2*... 
    sin(2*beta*L+2*alpham*W)-
4*alpha^3*L*alpham^4*sin(2*alpham*W)*c3^2*... 
    beta-4*L*sin(2*alpham*W)*beta^5*c4^2*alpha^3-
4*L*sin(2*alpham*W)*... 
    beta^5*c3^2*alpha^3+8*alpham^4*c2*c3*exp(alpha*L)*alpha^2*beta*... 
    sin(beta*L-
2*alpham*W)+2*alpham^2*alpha^3*beta^2*c3^2*cos(2*beta*L+2*... 
    
alpham*W)+8*beta^4*c4^2*alpham^3*sin(2*beta*L)*alpha*W+8*alpham^2*... 
    alpha^4*beta*nu*c4*c2*exp(alpha*L)*cos(beta*L-2*alpham*W)+8*c1*... 
    alpha^3*c3*beta^4*exp(-alpha*L)*cos(beta*L-
2*alpham*W)+2*c3*beta^6*... 
    c4*alpha*sin(2*beta*L+2*alpham*W)+4*c1^2*alpha^4*exp(-
alpha*L)^2*... 
    beta^3*sin(2*alpham*W)-24*alpham^2*alpha^2*beta^3*nu*c1*c4*... 
    exp(-alpha*L)*cos(beta*L+2*alpham*W)+16*alpham^3*c2^2*alpha^2*... 
    exp(alpha*L)^2*beta^3*W-16*alpham^2*alpha^3*beta^2*c3*c1*... 
    exp(-alpha*L)*cos(beta*L-
2*alpham*W)+32*alpham^3*alpha^2*beta^3*nu*... 
    c1^2*exp(-alpha*L)^2*W-8*alpham^2*alpha^4*beta*c1^2*exp(-
alpha*L)^2*... 
    sin(2*alpham*W)-64*alpham^3*alpha^3*beta^2*c3*c1*exp(-alpha*L)*... 
    sin(beta*L)*W-64*alpham^3*alpha^3*beta^2*c3*c2*exp(alpha*L)*... 
    sin(beta*L)*W-24*alpham^2*alpha^2*beta^3*nu*c2*c3*exp(alpha*L)*... 
    
sin(beta*L+2*alpham*W)+8*beta^2*c4^2*alpham^3*sin(2*beta*L)*alpha^3*... 
    W-beta^4*c4^2*alpha^3*cos(2*beta*L+2*alpham*W)-16*alpham^4*... 
    sin(2*alpham*W)*c1*alpha^2*c3*beta-
4*L*sin(2*alpham*W)*beta^7*c4^2*... 
    alpha-8*c1*alpha^4*c3*beta^3*exp(-alpha*L)*sin(beta*L+2*alpham*W)-
... 
    16*alpha^3*L*alpham^4*sin(2*alpham*W)*c2*c1*beta-4*alpha^3*L*... 
    alpham^4*sin(2*alpham*W)*c4^2*beta+8*c2*alpha^4*c3*beta^3*... 
    exp(alpha*L)*sin(beta*L+2*alpham*W)-32*alpha^3*L*alpham^2*... 
    
sin(2*alpham*W)*c2*c1*beta^3+8*alpha^3*L*alpham^2*sin(2*alpham*W)*... 
    beta^3*c4^2-16*alpha^3*L*alpham^2*sin(2*alpham*W)*c3^2*beta^3*... 
    nu-16*alpha^3*L*alpham^2*sin(2*alpham*W)*c4^2*beta^3*nu+32*c1*... 
    alpha^4*c4*beta^3*exp(-alpha*L)*sin(beta*L)*W*alpham-
8*c3*beta^6*c4*... 
    cos(2*beta*L)*alpha*W*alpham-4*c2^2*alpha^6*exp(alpha*L)^2*beta*... 
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    sin(2*alpham*W)-16*alpha^4*alpham^3*c2^2*W*beta-16*alpham^2*... 
    sin(2*alpham*W)*beta^4*c1*nu*c4*alpha+32*W*c2*alpha^4*c3*beta^3*... 
    alpham-32*c1*alpha^3*c3*beta^4*exp(-
alpha*L)*sin(beta*L)*W*alpham+8*... 
    alpha^3*L*alpham^2*sin(2*alpham*W)*beta^3*c3^2-
4*c3*beta^6*c4*alpha*... 
    sin(2*alpham*W)-4*beta^6*c4^2*sin(2*beta*L)*alpha*W*alpham-
32*c2*... 
    
alpha^4*c4*beta^3*exp(alpha*L)*sin(beta*L)*W*alpham+8*c2^2*alpha^4*... 
    exp(alpha*L)^2*beta^3*W*alpham+32*c1*alpha^4*c3*beta^3*exp(-
alpha*L)*... 
    
cos(beta*L)*W*alpham+4*beta^4*c3^2*sin(2*beta*L)*alpha^3*W*alpham+8*... 
    c2*alpha^4*c4*beta^3*exp(alpha*L)*cos(beta*L-2*alpham*W)-32*c2*... 
    
alpha^4*c3*beta^3*exp(alpha*L)*cos(beta*L)*W*alpham+4*beta^6*c3^2*... 
    sin(2*beta*L)*alpha*W*alpham-8*c1^2*alpha^4*exp(-
alpha*L)^2*beta^3*... 
    W*alpham-
8*c3*beta^4*c4*cos(2*beta*L)*alpha^3*W*alpham+8*c1*alpha^4*... 
    c3*beta^3*exp(-alpha*L)*sin(beta*L-2*alpham*W)-8*c1*alpha^3*c4*... 
    beta^4*exp(-alpha*L)*sin(beta*L+2*alpham*W))/(alpha^2+beta^2)... 
    /alpha/beta/alpham; 
  
  
function f=buckling(m,Nx,params) 
l=params.L;   %Length of Gel 
w=params.W; %Width of gel 
alpham=m*pi/w; 
nu=params.nu; %Poisson Ratio 
Def=params.D;  %Flexural Rigidity 
alpha=sqrt(m^2*pi^2/(w^2)+sqrt(Nx/Def*m^2*pi^2/(w^2))); 
beta=sqrt(-m^2*pi^2/(w^2)+sqrt(Nx/Def*m^2*pi^2/(w^2))); 
  
A=1; 
B=1; 
C=1; 
D=0; 
E=-alpha; 
F=alpha; 
G=0; 
H=beta; 
I=(alpha^2*exp(-alpha*l)-alpham^2*nu*exp(-alpha*l)); 
J=(alpha^2*exp(alpha*l)-alpham^2*nu*exp(alpha*l)); 
K=(-beta^2*cos(beta*l)-alpham^2*nu*cos(beta*l)); 
L=(-beta^2*sin(beta*l)-alpham^2*nu*sin(beta*l)); 
M=(-alpha^3*exp(-alpha*l)+alpham^2*(2-nu)*alpha*exp(-alpha*l)); 
N=(alpha^3*exp(alpha*l)-alpham^2*(2-nu)*alpha*exp(alpha*l)); 
O=(beta^3*sin(beta*l)+alpham^2*(2-nu)*beta*sin(beta*l)); 
P=(-beta^3*cos(beta*l)-alpham^2*(2-nu)*beta*cos(beta*l)); 
%Determinant of 4x4 Matrix 
f=A*(F*(K*P-O*L)-G*(J*P-L*N)+H*(J*O-K*N))-... 
    B*(E*(K*P-O*L)-G*(I*P-L*M)+H*(I*O-K*M))+... 
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    C*(E*(J*P-L*N)-F*(I*P-L*M)+H*(I*N-J*M))-... 
    D*(E*(J*O-K*N)-F*(I*O-K*M)+G*(I*N-J*M)); 
  
function C=buckling2(m,Nx,params) 
L=params.L;   %Length of Gel 
W=params.W; %Width of gel 
alpham=m*pi/W; 
nu=params.nu; %Poisson Ratio 
Def=params.D;  %Flexural Rigidity 
alpha=sqrt(m^2*pi^2/(W^2)+sqrt(Nx/Def*m^2*pi^2/(W^2))); 
beta=sqrt(-m^2*pi^2/(W^2)+sqrt(Nx/Def*m^2*pi^2/(W^2))); 
  
A=[1 1 1 0; -alpha alpha 0 beta;...  
    (alpha^2*exp(-alpha*L)-alpham^2*nu*exp(-alpha*L)) ... 
    (alpha^2*exp(alpha*L)-alpham^2*nu*exp(alpha*L)) ... 
    (-beta^2*cos(beta*L)-alpham^2*nu*cos(beta*L)) ... 
    (-beta^2*sin(beta*L)-alpham^2*nu*sin(beta*L));... 
    (-alpha^3*exp(-alpha*L)+alpham^2*(2-nu)*alpha*exp(-alpha*L)) ... 
    (alpha^3*exp(alpha*L)-alpham^2*(2-nu)*alpha*exp(alpha*L)) ... 
    (beta^3*sin(beta*L)+alpham^2*(2-nu)*beta*sin(beta*L)) ... 
    (-beta^3*cos(beta*L)-alpham^2*(2-nu)*beta*cos(beta*L))]; 
c=[0;0;0;0]; 
Amat=[A c]; 
%Making C4=1 
Aref=rref(Amat); 
C=[-Aref(1,4);-Aref(2,4);-Aref(3,4);1]; 
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